Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Вынесем из знаменателя, возведя в степень.
Этап 2.3
Перемножим экспоненты в .
Этап 2.3.1
Применим правило степени и перемножим показатели, .
Этап 2.3.2
Объединим и .
Этап 2.3.3
Вынесем знак минуса перед дробью.
Этап 3
По правилу степени интеграл по имеет вид .
Этап 4
Этап 4.1
Найдем значение в и в .
Этап 4.2
Упростим.
Этап 4.2.1
Перепишем в виде .
Этап 4.2.2
Применим правило степени и перемножим показатели, .
Этап 4.2.3
Сократим общий множитель .
Этап 4.2.3.1
Сократим общий множитель.
Этап 4.2.3.2
Перепишем это выражение.
Этап 4.2.4
Найдем экспоненту.
Этап 4.2.5
Умножим на .
Этап 4.2.6
Перепишем в виде .
Этап 4.2.7
Применим правило степени и перемножим показатели, .
Этап 4.2.8
Сократим общий множитель .
Этап 4.2.8.1
Сократим общий множитель.
Этап 4.2.8.2
Перепишем это выражение.
Этап 4.2.9
Найдем экспоненту.
Этап 4.2.10
Умножим на .
Этап 4.2.11
Добавим и .
Этап 4.2.12
Умножим на .
Этап 5