Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Разложим дробь и умножим на общий знаменатель.
Этап 1.1.1
Разложим дробь на множители.
Этап 1.1.1.1
Перепишем в виде .
Этап 1.1.1.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.1.3
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.1.4
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.1.5
Сократим общий множитель .
Этап 1.1.5.1
Сократим общий множитель.
Этап 1.1.5.2
Перепишем это выражение.
Этап 1.1.6
Сократим общий множитель .
Этап 1.1.6.1
Сократим общий множитель.
Этап 1.1.6.2
Перепишем это выражение.
Этап 1.1.7
Упростим каждый член.
Этап 1.1.7.1
Сократим общий множитель .
Этап 1.1.7.1.1
Сократим общий множитель.
Этап 1.1.7.1.2
Разделим на .
Этап 1.1.7.2
Применим свойство дистрибутивности.
Этап 1.1.7.3
Перенесем влево от .
Этап 1.1.7.4
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.7.5
Сократим общий множитель .
Этап 1.1.7.5.1
Сократим общий множитель.
Этап 1.1.7.5.2
Разделим на .
Этап 1.1.7.6
Применим свойство дистрибутивности.
Этап 1.1.7.7
Перенесем влево от .
Этап 1.1.8
Упростим выражение.
Этап 1.1.8.1
Перенесем .
Этап 1.1.8.2
Изменим порядок и .
Этап 1.1.8.3
Перенесем .
Этап 1.1.8.4
Перенесем .
Этап 1.2
Составим уравнения для переменных элементарной дроби и используем их для создания системы уравнений.
Этап 1.2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.3
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 1.3
Решим систему уравнений.
Этап 1.3.1
Решим относительно в .
Этап 1.3.1.1
Перепишем уравнение в виде .
Этап 1.3.1.2
Перепишем в виде .
Этап 1.3.1.3
Добавим к обеим частям уравнения.
Этап 1.3.2
Заменим все вхождения на во всех уравнениях.
Этап 1.3.2.1
Заменим все вхождения в на .
Этап 1.3.2.2
Упростим правую часть.
Этап 1.3.2.2.1
Добавим и .
Этап 1.3.3
Решим относительно в .
Этап 1.3.3.1
Перепишем уравнение в виде .
Этап 1.3.3.2
Разделим каждый член на и упростим.
Этап 1.3.3.2.1
Разделим каждый член на .
Этап 1.3.3.2.2
Упростим левую часть.
Этап 1.3.3.2.2.1
Сократим общий множитель .
Этап 1.3.3.2.2.1.1
Сократим общий множитель.
Этап 1.3.3.2.2.1.2
Разделим на .
Этап 1.3.4
Заменим все вхождения на во всех уравнениях.
Этап 1.3.4.1
Заменим все вхождения в на .
Этап 1.3.4.2
Упростим левую часть.
Этап 1.3.4.2.1
Избавимся от скобок.
Этап 1.3.5
Перечислим все решения.
Этап 1.4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для и .
Этап 1.5
Упростим.
Этап 1.5.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.5.2
Умножим на .
Этап 1.5.3
Умножим числитель на величину, обратную знаменателю.
Этап 1.5.4
Умножим на .
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
Пусть . Найдем .
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
По правилу суммы производная по имеет вид .
Этап 4.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.5
Добавим и .
Этап 4.2
Подставим нижнее предельное значение вместо в .
Этап 4.3
Добавим и .
Этап 4.4
Подставим верхнее предельное значение вместо в .
Этап 4.5
Добавим и .
Этап 4.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 4.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 5
Интеграл по имеет вид .
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Этап 7.1
Пусть . Найдем .
Этап 7.1.1
Перепишем.
Этап 7.1.2
Разделим на .
Этап 7.2
Подставим нижнее предельное значение вместо в .
Этап 7.3
Вычтем из .
Этап 7.4
Подставим верхнее предельное значение вместо в .
Этап 7.5
Упростим.
Этап 7.5.1
Умножим на .
Этап 7.5.2
Вычтем из .
Этап 7.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 7.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 8
Вынесем знак минуса перед дробью.
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Интеграл по имеет вид .
Этап 11
Объединим и .
Этап 12
Этап 12.1
Найдем значение в и в .
Этап 12.2
Найдем значение в и в .
Этап 12.3
Упростим.
Этап 12.3.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.3.2
Объединим и .
Этап 12.3.3
Объединим числители над общим знаменателем.
Этап 12.3.4
Объединим и .
Этап 12.3.5
Сократим общий множитель .
Этап 12.3.5.1
Сократим общий множитель.
Этап 12.3.5.2
Перепишем это выражение.
Этап 12.3.6
Умножим на .
Этап 13
Этап 13.1
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 13.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 13.3
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 13.4
Перепишем в виде произведения.
Этап 13.5
Умножим на обратную дробь, чтобы разделить на .
Этап 13.6
Умножим на .
Этап 13.7
Умножим на .
Этап 13.8
Для перемножения модулей следует перемножить члены внутри каждого модуля.
Этап 13.9
Умножим на .
Этап 13.10
Для перемножения модулей следует перемножить члены внутри каждого модуля.
Этап 13.11
Умножим на .
Этап 14
Этап 14.1
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 14.2
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 15
Выражение содержит деление на . Выражение не определено.
Неопределенные