Математический анализ Примеры

Вычислим интеграл интеграл 5(5-4cos(t))^(1/4)sin(t) в пределах от 0 до pi по t
Этап 1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Производная по равна .
Этап 2.1.3.3
Умножим на .
Этап 2.1.4
Добавим и .
Этап 2.2
Подставим нижнее предельное значение вместо в .
Этап 2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Точное значение : .
Этап 2.3.1.2
Умножим на .
Этап 2.3.2
Вычтем из .
Этап 2.4
Подставим верхнее предельное значение вместо в .
Этап 2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.5.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 2.5.1.2
Точное значение : .
Этап 2.5.1.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.5.1.3.1
Умножим на .
Этап 2.5.1.3.2
Умножим на .
Этап 2.5.2
Добавим и .
Этап 2.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 2.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 3
Объединим и .
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Объединим и .
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Найдем значение в и в .
Этап 7.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Объединим и .
Этап 7.2.2
Единица в любой степени равна единице.
Этап 7.2.3
Умножим на .
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Применим свойство дистрибутивности.
Этап 8.2
Объединим.
Этап 8.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 8.3.2
Сократим общий множитель.
Этап 8.3.3
Перепишем это выражение.
Этап 8.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.4.1
Вынесем множитель из .
Этап 8.4.2
Сократим общий множитель.
Этап 8.4.3
Перепишем это выражение.
Этап 8.5
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.5.1
Сократим общий множитель.
Этап 8.5.2
Перепишем это выражение.
Этап 8.5.3
Сократим общий множитель.
Этап 8.5.4
Разделим на .
Этап 9
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: