Математический анализ Примеры

Вычислим интеграл интеграл 1+2e^(-0.4x) в пределах от 2 до 3 по x
Этап 1
Разделим данный интеграл на несколько интегралов.
Этап 2
Применим правило дифференцирования постоянных функций.
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 4.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
Поскольку является константой относительно , производная по равна .
Этап 4.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.4
Умножим на .
Этап 4.2
Подставим нижнее предельное значение вместо в .
Этап 4.3
Умножим на .
Этап 4.4
Подставим верхнее предельное значение вместо в .
Этап 4.5
Умножим на .
Этап 4.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 4.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Вынесем знак минуса перед дробью.
Этап 5.2
Объединим и .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Умножим на .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Объединим и .
Этап 9.2
Вынесем знак минуса перед дробью.
Этап 10
Интеграл по имеет вид .
Этап 11
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 11.1
Найдем значение в и в .
Этап 11.2
Найдем значение в и в .
Этап 11.3
Вычтем из .
Этап 12
Упростим.
Нажмите для увеличения количества этапов...
Этап 12.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 12.1.1
Разделим на .
Этап 12.1.2
Умножим на .
Этап 12.1.3
Применим свойство дистрибутивности.
Этап 12.1.4
Умножим на .
Этап 12.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 12.2.2
Объединим и .
Этап 12.2.3
Вынесем знак минуса перед дробью.
Этап 12.2.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 12.2.5
Объединим и .
Этап 13
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 14