Введите задачу...
Математический анализ Примеры
Этап 1
Разделим данный интеграл на несколько интегралов.
Этап 2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Интеграл по имеет вид .
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Этап 5.1
Пусть . Найдем .
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
Поскольку является константой относительно , производная по равна .
Этап 5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.4
Умножим на .
Этап 5.2
Подставим нижнее предельное значение вместо в .
Этап 5.3
Умножим на .
Этап 5.4
Подставим верхнее предельное значение вместо в .
Этап 5.5
Умножим на .
Этап 5.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 5.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Этап 7.1
Умножим на .
Этап 7.2
Умножим на .
Этап 8
Интеграл по имеет вид .
Этап 9
Этап 9.1
Найдем значение в и в .
Этап 9.2
Найдем значение в и в .
Этап 9.3
Избавимся от ненужных скобок.
Этап 10
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 11
Этап 11.1
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 11.2
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 11.3
Разделим на .
Этап 11.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 12
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 13