Математический анализ Примеры

Вычислим интеграл интеграл в пределах от 1 до 7 от (10x^2+9)/( квадратный корень из x) по x
Этап 1
С помощью запишем в виде .
Этап 2
Вынесем из знаменателя, возведя в степень.
Этап 3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.1
Применим правило степени и перемножим показатели, .
Этап 3.2
Объединим и .
Этап 3.3
Вынесем знак минуса перед дробью.
Этап 4
Развернем .
Нажмите для увеличения количества этапов...
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Применим правило степени для объединения показателей.
Этап 4.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.4
Объединим и .
Этап 4.5
Объединим числители над общим знаменателем.
Этап 4.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.6.1
Умножим на .
Этап 4.6.2
Вычтем из .
Этап 5
Разделим данный интеграл на несколько интегралов.
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Объединим и .
Этап 9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 11.1
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 11.1.1
Найдем значение в и в .
Этап 11.1.2
Найдем значение в и в .
Этап 11.1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 11.1.3.1
Единица в любой степени равна единице.
Этап 11.1.3.2
Умножим на .
Этап 11.1.3.3
Единица в любой степени равна единице.
Этап 11.1.3.4
Умножим на .
Этап 11.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 11.2.1.1
Применим свойство дистрибутивности.
Этап 11.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 11.2.1.2.1
Вынесем множитель из .
Этап 11.2.1.2.2
Сократим общий множитель.
Этап 11.2.1.2.3
Перепишем это выражение.
Этап 11.2.1.3
Умножим на .
Этап 11.2.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 11.2.1.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 11.2.1.4.2
Вынесем множитель из .
Этап 11.2.1.4.3
Сократим общий множитель.
Этап 11.2.1.4.4
Перепишем это выражение.
Этап 11.2.1.5
Умножим на .
Этап 11.2.1.6
Применим свойство дистрибутивности.
Этап 11.2.1.7
Умножим на .
Этап 11.2.1.8
Умножим на .
Этап 11.2.2
Вычтем из .
Этап 12
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 13