Введите задачу...
Математический анализ Примеры
Этап 1
Разделим данный интеграл на несколько интегралов.
Этап 2
Применим правило дифференцирования постоянных функций.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Этап 5.1
Упростим.
Этап 5.2
Упростим.
Этап 5.2.1
Объединим и .
Этап 5.2.2
Умножим на .
Этап 5.2.3
Сократим общий множитель и .
Этап 5.2.3.1
Вынесем множитель из .
Этап 5.2.3.2
Сократим общие множители.
Этап 5.2.3.2.1
Вынесем множитель из .
Этап 5.2.3.2.2
Сократим общий множитель.
Этап 5.2.3.2.3
Перепишем это выражение.
Этап 5.2.3.2.4
Разделим на .