Математический анализ Примеры

Вычислим интеграл интеграл (sin(4x)^6)cos(4x) в пределах от 0 до pi по x
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Производная по равна .
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Умножим на .
Этап 1.1.3.3.2
Перенесем влево от .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Умножим на .
Этап 1.3.2
Точное значение : .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 1.5.2
Точное значение : .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Объединим и .
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем значение в и в .
Этап 5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Возведение в любую положительную степень дает .
Этап 5.2.2
Умножим на .
Этап 5.2.3
Возведение в любую положительную степень дает .
Этап 5.2.4
Умножим на .
Этап 5.2.5
Умножим на .
Этап 5.2.6
Добавим и .
Этап 5.2.7
Умножим на .