Математический анализ Примеры

Проверить дифференцируемость функции на интервале y=25-x^2 , [-5,5]
,
Этап 1
Изменим порядок и .
Этап 2
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3
Умножим на .
Этап 2.1.3
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.3.2
Добавим и .
Этап 2.2
Первая производная по равна .
Этап 3
Выясним, является ли производная непрерывной на .
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 3.2
 — непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 4
Функция является дифференцируемой на , поскольку производная является непрерывной на .
Функция является дифференцируемой.
Этап 5