Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило умножения на константу.
Этап 1.1.1.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2
Перепишем в виде .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем.
Этап 1.1.3.1
Умножим на .
Этап 1.1.3.2
По правилу суммы производная по имеет вид .
Этап 1.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3.5
Упростим выражение.
Этап 1.1.3.5.1
Добавим и .
Этап 1.1.3.5.2
Умножим на .
Этап 1.1.4
Упростим.
Этап 1.1.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.1.4.2
Объединим термины.
Этап 1.1.4.2.1
Объединим и .
Этап 1.1.4.2.2
Вынесем знак минуса перед дробью.
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Чтобы проверить непрерывность функции на промежутке , найдем область определения .
Этап 2.1.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2.1.2
Решим относительно .
Этап 2.1.2.1
Приравняем к .
Этап 2.1.2.2
Добавим к обеим частям уравнения.
Этап 2.1.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 2.2
— непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 3
Функция является дифференцируемой на , поскольку производная является непрерывной на .
Функция является дифференцируемой.
Этап 4