Введите задачу...
Математический анализ Примеры
Этап 1
Рассмотрим определение производной на основе предела.
Этап 2
Этап 2.1
Найдем значение функции в .
Этап 2.1.1
Заменим в этом выражении переменную на .
Этап 2.1.2
Упростим результат.
Этап 2.1.2.1
Упростим каждый член.
Этап 2.1.2.1.1
Перепишем в виде .
Этап 2.1.2.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.1.2.1.2.1
Применим свойство дистрибутивности.
Этап 2.1.2.1.2.2
Применим свойство дистрибутивности.
Этап 2.1.2.1.2.3
Применим свойство дистрибутивности.
Этап 2.1.2.1.3
Упростим и объединим подобные члены.
Этап 2.1.2.1.3.1
Упростим каждый член.
Этап 2.1.2.1.3.1.1
Умножим на .
Этап 2.1.2.1.3.1.2
Умножим на .
Этап 2.1.2.1.3.2
Добавим и .
Этап 2.1.2.1.3.2.1
Изменим порядок и .
Этап 2.1.2.1.3.2.2
Добавим и .
Этап 2.1.2.1.4
Применим свойство дистрибутивности.
Этап 2.1.2.1.5
Умножим на .
Этап 2.1.2.1.6
Применим свойство дистрибутивности.
Этап 2.1.2.1.7
Применим свойство дистрибутивности.
Этап 2.1.2.1.8
Применим свойство дистрибутивности.
Этап 2.1.2.2
Окончательный ответ: .
Этап 2.2
Упорядочим.
Этап 2.2.1
Перенесем .
Этап 2.2.2
Перенесем .
Этап 2.2.3
Перенесем .
Этап 2.2.4
Изменим порядок и .
Этап 2.3
Найдем компоненты определения.
Этап 3
Подставим компоненты.
Этап 4
Этап 4.1
Упростим числитель.
Этап 4.1.1
Применим свойство дистрибутивности.
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Умножим на .
Этап 4.1.2.3
Умножим на .
Этап 4.1.2.4
Умножим на .
Этап 4.1.2.5
Умножим на .
Этап 4.1.3
Вычтем из .
Этап 4.1.4
Добавим и .
Этап 4.1.5
Вычтем из .
Этап 4.1.6
Добавим и .
Этап 4.1.7
Вычтем из .
Этап 4.1.8
Добавим и .
Этап 4.1.9
Добавим и .
Этап 4.1.10
Добавим и .
Этап 4.1.11
Вычтем из .
Этап 4.1.12
Добавим и .
Этап 4.1.13
Вынесем множитель из .
Этап 4.1.13.1
Вынесем множитель из .
Этап 4.1.13.2
Вынесем множитель из .
Этап 4.1.13.3
Вынесем множитель из .
Этап 4.1.13.4
Вынесем множитель из .
Этап 4.1.13.5
Вынесем множитель из .
Этап 4.1.13.6
Вынесем множитель из .
Этап 4.1.13.7
Вынесем множитель из .
Этап 4.2
Сократим выражение, путем отбрасывания общих множителей.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.2.2
Перенесем .
Этап 5
Этап 5.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 5.2
Найдем предел , который является константой по мере приближения к .
Этап 5.3
Найдем предел , который является константой по мере приближения к .
Этап 5.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.5
Найдем предел , который является константой по мере приближения к .
Этап 6
Найдем предел , подставив значение для .
Этап 7
Этап 7.1
Упростим каждый член.
Этап 7.1.1
Умножим на .
Этап 7.1.2
Умножим на .
Этап 7.2
Добавим и .
Этап 8