Введите задачу...
Математический анализ Примеры
Этап 1
Рассмотрим определение производной на основе предела.
Этап 2
Этап 2.1
Найдем значение функции в .
Этап 2.1.1
Заменим в этом выражении переменную на .
Этап 2.1.2
Упростим результат.
Этап 2.1.2.1
Упростим каждый член.
Этап 2.1.2.1.1
Воспользуемся бином Ньютона.
Этап 2.1.2.1.2
Применим свойство дистрибутивности.
Этап 2.1.2.2
Окончательный ответ: .
Этап 2.2
Упорядочим.
Этап 2.2.1
Перенесем .
Этап 2.2.2
Перенесем .
Этап 2.2.3
Перенесем .
Этап 2.2.4
Перенесем .
Этап 2.2.5
Перенесем .
Этап 2.2.6
Изменим порядок и .
Этап 2.3
Найдем компоненты определения.
Этап 3
Подставим компоненты.
Этап 4
Этап 4.1
Упростим числитель.
Этап 4.1.1
Применим свойство дистрибутивности.
Этап 4.1.2
Умножим на .
Этап 4.1.3
Вычтем из .
Этап 4.1.4
Добавим и .
Этап 4.1.5
Добавим и .
Этап 4.1.6
Добавим и .
Этап 4.1.7
Вынесем множитель из .
Этап 4.1.7.1
Вынесем множитель из .
Этап 4.1.7.2
Вынесем множитель из .
Этап 4.1.7.3
Вынесем множитель из .
Этап 4.1.7.4
Вынесем множитель из .
Этап 4.1.7.5
Вынесем множитель из .
Этап 4.1.7.6
Вынесем множитель из .
Этап 4.1.7.7
Вынесем множитель из .
Этап 4.2
Сократим выражение, путем отбрасывания общих множителей.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.2.2
Упростим выражение.
Этап 4.2.2.1
Перенесем .
Этап 4.2.2.2
Перенесем .
Этап 4.2.2.3
Изменим порядок и .
Этап 5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 6
Найдем предел , который является константой по мере приближения к .
Этап 7
Вынесем член из-под знака предела, так как он не зависит от .
Этап 8
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 9
Найдем предел , который является константой по мере приближения к .
Этап 10
Этап 10.1
Найдем предел , подставив значение для .
Этап 10.2
Найдем предел , подставив значение для .
Этап 11
Этап 11.1
Упростим каждый член.
Этап 11.1.1
Умножим .
Этап 11.1.1.1
Умножим на .
Этап 11.1.1.2
Умножим на .
Этап 11.1.2
Возведение в любую положительную степень дает .
Этап 11.1.3
Умножим на .
Этап 11.2
Объединим противоположные члены в .
Этап 11.2.1
Добавим и .
Этап 11.2.2
Добавим и .
Этап 12