Математический анализ Примеры

Этап 1
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
Перепишем в виде .
Этап 1.1.1.1.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.2.1
Применим правило степени и перемножим показатели, .
Этап 1.1.1.1.2.2
Умножим на .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.1.1.3.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.2.1
Объединим и .
Этап 1.1.1.3.2.2
Вынесем знак минуса перед дробью.
Этап 1.1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.1
Перепишем в виде .
Этап 1.1.2.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.1.2.2.2.1
Применим правило степени и перемножим показатели, .
Этап 1.1.2.2.2.2
Умножим на .
Этап 1.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.4
Умножим на .
Этап 1.1.2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.2.5.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.1.2.5.2
Объединим и .
Этап 1.1.3
Вторая производная по равна .
Этап 1.2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть вторая производная равна .
Этап 1.2.2
Приравняем числитель к нулю.
Этап 1.2.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Нет решения
Этап 2
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Перепишем в виде .
Этап 2.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2.2.3
Плюс или минус равно .
Этап 2.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 4
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Возведем в степень .
Этап 4.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Вынесем множитель из .
Этап 4.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Вынесем множитель из .
Этап 4.2.2.2.2
Сократим общий множитель.
Этап 4.2.2.2.3
Перепишем это выражение.
Этап 4.2.3
Окончательный ответ: .
Этап 4.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Возведем в степень .
Этап 5.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вынесем множитель из .
Этап 5.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1
Вынесем множитель из .
Этап 5.2.2.2.2
Сократим общий множитель.
Этап 5.2.2.2.3
Перепишем это выражение.
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 6
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 7