Математический анализ Примеры

Найти точки перегиба y=x натуральный логарифм от x
Этап 1
Запишем в виде функции.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.1.2
Производная по равна .
Этап 2.1.3
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Объединим и .
Этап 2.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.3.2.1
Сократим общий множитель.
Этап 2.1.3.2.2
Перепишем это выражение.
Этап 2.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3.4
Умножим на .
Этап 2.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
По правилу суммы производная по имеет вид .
Этап 2.2.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Добавим и .
Этап 2.3
Вторая производная по равна .
Этап 3
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть вторая производная равна .
Этап 3.2
Приравняем числитель к нулю.
Этап 3.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Этап 4
Не найдено значений, которые могут сделать вторую производную равной .
Нет точек перегиба