Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Найдем первую производную.
Этап 2.1.1
Продифференцируем.
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2
Найдем значение .
Этап 2.1.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2.1.2
Производная по равна .
Этап 2.1.2.1.3
Заменим все вхождения на .
Этап 2.1.2.2
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.4
Умножим на .
Этап 2.1.2.5
Умножим на .
Этап 2.2
Найдем вторую производную.
Этап 2.2.1
Продифференцируем.
Этап 2.2.1.1
По правилу суммы производная по имеет вид .
Этап 2.2.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.2
Найдем значение .
Этап 2.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2.2.2
Производная по равна .
Этап 2.2.2.2.3
Заменим все вхождения на .
Этап 2.2.2.3
Поскольку является константой относительно , производная по равна .
Этап 2.2.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.5
Умножим на .
Этап 2.2.2.6
Перенесем влево от .
Этап 2.2.2.7
Умножим на .
Этап 2.2.3
Вычтем из .
Этап 2.3
Вторая производная по равна .
Этап 3
Этап 3.1
Пусть вторая производная равна .
Этап 3.2
Разделим каждый член на и упростим.
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Сократим общий множитель .
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.2.3
Упростим правую часть.
Этап 3.2.3.1
Разделим на .
Этап 3.3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 3.4
Упростим правую часть.
Этап 3.4.1
Точное значение : .
Этап 3.5
Разделим каждый член на и упростим.
Этап 3.5.1
Разделим каждый член на .
Этап 3.5.2
Упростим левую часть.
Этап 3.5.2.1
Сократим общий множитель .
Этап 3.5.2.1.1
Сократим общий множитель.
Этап 3.5.2.1.2
Разделим на .
Этап 3.5.3
Упростим правую часть.
Этап 3.5.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 3.5.3.2
Умножим .
Этап 3.5.3.2.1
Умножим на .
Этап 3.5.3.2.2
Умножим на .
Этап 3.6
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 3.7
Решим относительно .
Этап 3.7.1
Упростим.
Этап 3.7.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.7.1.2
Объединим и .
Этап 3.7.1.3
Объединим числители над общим знаменателем.
Этап 3.7.1.4
Умножим на .
Этап 3.7.1.5
Вычтем из .
Этап 3.7.2
Разделим каждый член на и упростим.
Этап 3.7.2.1
Разделим каждый член на .
Этап 3.7.2.2
Упростим левую часть.
Этап 3.7.2.2.1
Сократим общий множитель .
Этап 3.7.2.2.1.1
Сократим общий множитель.
Этап 3.7.2.2.1.2
Разделим на .
Этап 3.7.2.3
Упростим правую часть.
Этап 3.7.2.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 3.7.2.3.2
Умножим .
Этап 3.7.2.3.2.1
Умножим на .
Этап 3.7.2.3.2.2
Умножим на .
Этап 3.8
Найдем период .
Этап 3.8.1
Период функции можно вычислить по формуле .
Этап 3.8.2
Заменим на в формуле периода.
Этап 3.8.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.8.4
Сократим общий множитель .
Этап 3.8.4.1
Сократим общий множитель.
Этап 3.8.4.2
Разделим на .
Этап 3.9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 3.10
Объединим ответы.
, для любого целого
, для любого целого
Этап 4
Этап 4.1
Подставим в , чтобы найти значение .
Этап 4.1.1
Заменим в этом выражении переменную на .
Этап 4.1.2
Упростим результат.
Этап 4.1.2.1
Упростим каждый член.
Этап 4.1.2.1.1
Сократим общий множитель .
Этап 4.1.2.1.1.1
Вынесем множитель из .
Этап 4.1.2.1.1.2
Сократим общий множитель.
Этап 4.1.2.1.1.3
Перепишем это выражение.
Этап 4.1.2.1.2
Точное значение : .
Этап 4.1.2.2
Добавим и .
Этап 4.1.2.3
Окончательный ответ: .
Этап 4.2
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 5
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Умножим на .
Этап 6.2.2
Окончательный ответ: .
Этап 6.3
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Умножим на .
Этап 7.2.2
Окончательный ответ: .
Этап 7.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. В этом случае точкой перегиба является точка .
Этап 9