Математический анализ Примеры

Найти вогнутость 3x^4-4x^3-6x^2+12x+1
Этап 1
Запишем в виде функции.
Этап 2
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.2.3
Умножим на .
Этап 2.1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.3.3
Умножим на .
Этап 2.1.1.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.4.3
Умножим на .
Этап 2.1.1.5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.1.5.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.5.3
Умножим на .
Этап 2.1.1.6
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.1.1.6.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.1.6.2
Добавим и .
Этап 2.1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.2.3
Умножим на .
Этап 2.1.2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3.3
Умножим на .
Этап 2.1.2.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.4.3
Умножим на .
Этап 2.1.2.5
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.1.2.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.2.5.2
Добавим и .
Этап 2.1.3
Вторая производная по равна .
Этап 2.2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Пусть вторая производная равна .
Этап 2.2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Вынесем множитель из .
Этап 2.2.2.1.2
Вынесем множитель из .
Этап 2.2.2.1.3
Вынесем множитель из .
Этап 2.2.2.1.4
Вынесем множитель из .
Этап 2.2.2.1.5
Вынесем множитель из .
Этап 2.2.2.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.2.2.1
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 2.2.2.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 2.2.2.2.1.1.1
Вынесем множитель из .
Этап 2.2.2.2.1.1.2
Запишем как плюс
Этап 2.2.2.2.1.1.3
Применим свойство дистрибутивности.
Этап 2.2.2.2.1.1.4
Умножим на .
Этап 2.2.2.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 2.2.2.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.2.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.2.2.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.2.2.2.2
Избавимся от ненужных скобок.
Этап 2.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Приравняем к .
Этап 2.2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.1
Вычтем из обеих частей уравнения.
Этап 2.2.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.2.1
Разделим каждый член на .
Этап 2.2.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.2.2.1.1
Сократим общий множитель.
Этап 2.2.4.2.2.2.1.2
Разделим на .
Этап 2.2.4.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 2.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Приравняем к .
Этап 2.2.5.2
Добавим к обеим частям уравнения.
Этап 2.2.6
Окончательным решением являются все значения, при которых верно.
Этап 3
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 4
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.1.3
Умножим на .
Этап 5.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Добавим и .
Этап 5.2.2.2
Вычтем из .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 6
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведение в любую положительную степень дает .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Умножим на .
Этап 6.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Добавим и .
Этап 6.2.2.2
Вычтем из .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 7
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.1.3
Умножим на .
Этап 7.2.2
Упростим путем вычитания чисел.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Вычтем из .
Этап 7.2.2.2
Вычтем из .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 8
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 9