Математический анализ Примеры

Найти вогнутость f(x)=(x-4)/(x^3)
Этап 1
Find the values where the second derivative is equal to .
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1.1
Применим правило степени и перемножим показатели, .
Этап 1.1.1.2.1.2
Умножим на .
Этап 1.1.1.2.2
По правилу суммы производная по имеет вид .
Этап 1.1.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.2.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.5.1
Добавим и .
Этап 1.1.1.2.5.2
Умножим на .
Этап 1.1.1.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.7
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.7.1
Умножим на .
Этап 1.1.1.2.7.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.7.2.1
Вынесем множитель из .
Этап 1.1.1.2.7.2.2
Вынесем множитель из .
Этап 1.1.1.2.7.2.3
Вынесем множитель из .
Этап 1.1.1.3
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Вынесем множитель из .
Этап 1.1.1.3.2
Сократим общий множитель.
Этап 1.1.1.3.3
Перепишем это выражение.
Этап 1.1.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.1
Применим свойство дистрибутивности.
Этап 1.1.1.4.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.2.1
Умножим на .
Этап 1.1.1.4.2.2
Вычтем из .
Этап 1.1.1.4.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.3.1
Вынесем множитель из .
Этап 1.1.1.4.3.2
Вынесем множитель из .
Этап 1.1.1.4.3.3
Вынесем множитель из .
Этап 1.1.1.4.4
Вынесем множитель из .
Этап 1.1.1.4.5
Перепишем в виде .
Этап 1.1.1.4.6
Вынесем множитель из .
Этап 1.1.1.4.7
Перепишем в виде .
Этап 1.1.1.4.8
Вынесем знак минуса перед дробью.
Этап 1.1.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1.1
Применим правило степени и перемножим показатели, .
Этап 1.1.2.3.1.2
Умножим на .
Этап 1.1.2.3.2
По правилу суммы производная по имеет вид .
Этап 1.1.2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.3.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.5.1
Добавим и .
Этап 1.1.2.3.5.2
Умножим на .
Этап 1.1.2.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3.7
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.7.1
Умножим на .
Этап 1.1.2.3.7.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.7.2.1
Вынесем множитель из .
Этап 1.1.2.3.7.2.2
Вынесем множитель из .
Этап 1.1.2.3.7.2.3
Вынесем множитель из .
Этап 1.1.2.4
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.2.4.1
Вынесем множитель из .
Этап 1.1.2.4.2
Сократим общий множитель.
Этап 1.1.2.4.3
Перепишем это выражение.
Этап 1.1.2.5
Объединим и .
Этап 1.1.2.6
Вынесем знак минуса перед дробью.
Этап 1.1.2.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.1
Применим свойство дистрибутивности.
Этап 1.1.2.7.2
Применим свойство дистрибутивности.
Этап 1.1.2.7.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.3.1.1
Умножим на .
Этап 1.1.2.7.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.3.1.2.1
Умножим на .
Этап 1.1.2.7.3.1.2.2
Умножим на .
Этап 1.1.2.7.3.2
Вычтем из .
Этап 1.1.2.7.4
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.4.1
Вынесем множитель из .
Этап 1.1.2.7.4.2
Вынесем множитель из .
Этап 1.1.2.7.4.3
Вынесем множитель из .
Этап 1.1.2.7.5
Вынесем множитель из .
Этап 1.1.2.7.6
Перепишем в виде .
Этап 1.1.2.7.7
Вынесем множитель из .
Этап 1.1.2.7.8
Перепишем в виде .
Этап 1.1.2.7.9
Вынесем знак минуса перед дробью.
Этап 1.1.2.7.10
Умножим на .
Этап 1.1.2.7.11
Умножим на .
Этап 1.1.3
Вторая производная по равна .
Этап 1.2
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть вторая производная равна .
Этап 1.2.2
Приравняем числитель к нулю.
Этап 1.2.3
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.1
Разделим каждый член на .
Этап 1.2.3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.2.1.1
Сократим общий множитель.
Этап 1.2.3.1.2.1.2
Разделим на .
Этап 1.2.3.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.3.1
Разделим на .
Этап 1.2.3.2
Добавим к обеим частям уравнения.
Этап 2
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Перепишем в виде .
Этап 2.2.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 2.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 4
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Вычтем из .
Этап 4.2.1.2
Возведем в степень .
Этап 4.2.1.3
Умножим на .
Этап 4.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Вынесем множитель из .
Этап 4.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Вынесем множитель из .
Этап 4.2.2.2.2
Сократим общий множитель.
Этап 4.2.2.2.3
Перепишем это выражение.
Этап 4.2.3
Окончательный ответ: .
Этап 4.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 5
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Вычтем из .
Этап 5.2.1.2
Возведем в степень .
Этап 5.2.1.3
Умножим на .
Этап 5.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Вынесем множитель из .
Этап 5.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1
Вынесем множитель из .
Этап 5.2.2.2.2
Сократим общий множитель.
Этап 5.2.2.2.3
Перепишем это выражение.
Этап 5.2.3
Вынесем знак минуса перед дробью.
Этап 5.2.4
Окончательный ответ: .
Этап 5.3
График вогнут вниз на интервале , поскольку имеет отрицательное значение.
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Этап 6
Подставим любое число из интервала в выражение для второй производной и вычислим выпуклость.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Вычтем из .
Этап 6.2.1.2
Возведем в степень .
Этап 6.2.1.3
Умножим на .
Этап 6.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Вынесем множитель из .
Этап 6.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Вынесем множитель из .
Этап 6.2.2.2.2
Сократим общий множитель.
Этап 6.2.2.2.3
Перепишем это выражение.
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 7
График вогнут вниз, когда вторая производная отрицательна, и вогнут вверх, когда вторая производная положительна.
Вогнутость вверх на интервале , поскольку больше нуля
Вогнутость вниз на интервале , поскольку меньше нуля
Вогнутость вверх на интервале , поскольку больше нуля
Этап 8