Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем вторую производную.
Этап 1.1.1
Найдем первую производную.
Этап 1.1.1.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3
Умножим на .
Этап 1.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3
Вторая производная по равна .
Этап 1.2
Приравняем вторую производную к , затем найдем решение уравнения .
Этап 1.2.1
Пусть вторая производная равна .
Этап 1.2.2
Поскольку , это уравнение всегда будет истинным.
Всегда истинное
Всегда истинное
Всегда истинное
Этап 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 3
Создадим интервалы вокруг значений , в которых вторая производная равна нулю или не определена.
Этап 4
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Окончательный ответ: .
Этап 4.3
График вогнут вверх на интервале , поскольку имеет положительное значение.
График имеет вогнутость вверх.
График имеет вогнутость вверх.
Этап 5