Введите задачу...
Математический анализ Примеры
,
Этап 1
Если функция непрерывна на интервале и дифференцируема на , тогда на интервале существует хотя бы одно вещественное число , такое что . Теорема о среднем выражает отношение между угловым коэффициентом касательной к кривой при и угловым коэффициентом прямой, проходящей через точки и .
Если выражение непрерывно на
и если выражение дифференцируемо на ,
тогда существует хотя бы одна точка на : .
Этап 2
Этап 2.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 2.2
— непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 3
Этап 3.1
Найдем первую производную.
Этап 3.1.1
По правилу суммы производная по имеет вид .
Этап 3.1.2
Найдем значение .
Этап 3.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.2.3
Умножим на .
Этап 3.1.3
Продифференцируем, используя правило константы.
Этап 3.1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.1.3.2
Добавим и .
Этап 3.2
Первая производная по равна .
Этап 4
Этап 4.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 4.2
— непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 5
Функция является дифференцируемой на , поскольку производная является непрерывной на .
Функция является дифференцируемой.
Этап 6
удовлетворяет двум условиям теоремы о среднем. Это непрерывное выражение в области , дифференцируемое в области .
— непрерывное выражение в области , дифференцируемое в области .
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Умножим на .
Этап 7.2.2
Вычтем из .
Этап 7.2.3
Окончательный ответ: .
Этап 8
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Этап 8.2.1
Умножим на .
Этап 8.2.2
Вычтем из .
Этап 8.2.3
Окончательный ответ: .
Этап 9
Этап 9.1
Упростим .
Этап 9.1.1
Упростим числитель.
Этап 9.1.1.1
Умножим на .
Этап 9.1.1.2
Вычтем из .
Этап 9.1.2
Упростим знаменатель.
Этап 9.1.2.1
Умножим на .
Этап 9.1.2.2
Вычтем из .
Этап 9.1.3
Разделим на .
Этап 9.2
Поскольку , это уравнение всегда будет истинным.
Всегда истинное
Всегда истинное
Этап 10
График представляет собой прямую. В каждой точке кривой есть касательная, параллельная прямой, проходящей через конечные точки и .
При каждом значении x на кривой существует касательная, параллельная прямой, которая проходит через конечные точки и .
Этап 11