Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных h(x)=(x+2)^7-7x-1
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.1.3
Заменим все вхождения на .
Этап 1.1.2.2
По правилу суммы производная по имеет вид .
Этап 1.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.5
Добавим и .
Этап 1.1.2.6
Умножим на .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.4.2
Добавим и .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Воспользуемся бином Ньютона.
Этап 2.2.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Умножим на .
Этап 2.2.1.2.2
Возведем в степень .
Этап 2.2.1.2.3
Умножим на .
Этап 2.2.1.2.4
Возведем в степень .
Этап 2.2.1.2.5
Умножим на .
Этап 2.2.1.2.6
Возведем в степень .
Этап 2.2.1.2.7
Умножим на .
Этап 2.2.1.2.8
Возведем в степень .
Этап 2.2.1.2.9
Умножим на .
Этап 2.2.1.2.10
Возведем в степень .
Этап 2.2.1.3
Применим свойство дистрибутивности.
Этап 2.2.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1.4.1
Умножим на .
Этап 2.2.1.4.2
Умножим на .
Этап 2.2.1.4.3
Умножим на .
Этап 2.2.1.4.4
Умножим на .
Этап 2.2.1.4.5
Умножим на .
Этап 2.2.1.4.6
Умножим на .
Этап 2.2.2
Вычтем из .
Этап 2.3
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Этап 3
Значения, при которых производная равна : .
Этап 4
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 5
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Добавим и .
Этап 5.2.1.2
Возведем в степень .
Этап 5.2.1.3
Умножим на .
Этап 5.2.2
Вычтем из .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Добавим и .
Этап 6.2.1.2
Возведение в любую положительную степень дает .
Этап 6.2.1.3
Умножим на .
Этап 6.2.2
Вычтем из .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Добавим и .
Этап 7.2.1.2
Возведем в степень .
Этап 7.2.1.3
Умножим на .
Этап 7.2.2
Вычтем из .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 9