Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Найдем первую производную.
Этап 2.1.1
Перепишем в виде .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.2
Первая производная по равна .
Этап 3
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Приравняем числитель к нулю.
Этап 3.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Этап 4
В области определения исходной задачи нет значений , при которых производная равна или не определена.
Критические точки не найдены
Этап 5
Этап 5.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 5.2
Решим относительно .
Этап 5.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.2.2
Упростим .
Этап 5.2.2.1
Перепишем в виде .
Этап 5.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.2.2.3
Плюс или минус равно .
Этап 6
Найдя точку, в которой производная равна или не определена, проверим возрастание и убывание в интервале .
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Возведем в степень .
Этап 7.2.2
Сократим общий множитель .
Этап 7.2.2.1
Сократим общий множитель.
Этап 7.2.2.2
Перепишем это выражение.
Этап 7.2.3
Умножим на .
Этап 7.2.4
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Этап 8.2.1
Единица в любой степени равна единице.
Этап 8.2.2
Сократим общий множитель .
Этап 8.2.2.1
Сократим общий множитель.
Этап 8.2.2.2
Перепишем это выражение.
Этап 8.2.3
Умножим на .
Этап 8.2.4
Окончательный ответ: .
Этап 8.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 9
Перечислим интервалы, на которых функция возрастает и убывает.
Убывание на:
Этап 10