Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем.
Этап 1.1.3.1
Умножим на .
Этап 1.1.3.2
По правилу суммы производная по имеет вид .
Этап 1.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3.5
Упростим выражение.
Этап 1.1.3.5.1
Добавим и .
Этап 1.1.3.5.2
Умножим на .
Этап 1.1.4
Упростим.
Этап 1.1.4.1
Применим свойство дистрибутивности.
Этап 1.1.4.2
Применим свойство дистрибутивности.
Этап 1.1.4.3
Объединим термины.
Этап 1.1.4.3.1
Возведем в степень .
Этап 1.1.4.3.2
Применим правило степени для объединения показателей.
Этап 1.1.4.3.3
Добавим и .
Этап 1.1.4.3.4
Умножим на .
Этап 1.2
Найдем вторую производную.
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Найдем значение .
Этап 1.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.2.3
Умножим на .
Этап 1.2.3
Найдем значение .
Этап 1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3.3
Умножим на .
Этап 1.3
Вторая производная по равна .
Этап 2
Этап 2.1
Пусть вторая производная равна .
Этап 2.2
Добавим к обеим частям уравнения.
Этап 2.3
Разделим каждый член на и упростим.
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Этап 2.3.2.1
Сократим общий множитель .
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Этап 2.3.3.1
Разделим на .
Этап 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.5
Упростим .
Этап 2.5.1
Перепишем в виде .
Этап 2.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Этап 3.1
Подставим в , чтобы найти значение .
Этап 3.1.1
Заменим в этом выражении переменную на .
Этап 3.1.2
Упростим результат.
Этап 3.1.2.1
Возведем в степень .
Этап 3.1.2.2
Вычтем из .
Этап 3.1.2.3
Возведем в степень .
Этап 3.1.2.4
Умножим на .
Этап 3.1.2.5
Окончательный ответ: .
Этап 3.2
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.3
Подставим в , чтобы найти значение .
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Этап 3.3.2.1
Возведем в степень .
Этап 3.3.2.2
Вычтем из .
Этап 3.3.2.3
Возведем в степень .
Этап 3.3.2.4
Умножим на .
Этап 3.3.2.5
Окончательный ответ: .
Этап 3.4
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 3.5
Определим точки, которые могут быть точками перегиба.
Этап 4
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Упростим каждый член.
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.2
Вычтем из .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Упростим каждый член.
Этап 6.2.1.1
Возведение в любую положительную степень дает .
Этап 6.2.1.2
Умножим на .
Этап 6.2.2
Вычтем из .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Упростим каждый член.
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.2
Вычтем из .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Этап 9