Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.5
Умножим на .
Этап 1.1.2.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.7
Добавим и .
Этап 1.1.2.8
По правилу суммы производная по имеет вид .
Этап 1.1.2.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.10
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.11
Упростим выражение.
Этап 1.1.2.11.1
Добавим и .
Этап 1.1.2.11.2
Умножим на .
Этап 1.1.3
Упростим.
Этап 1.1.3.1
Применим свойство дистрибутивности.
Этап 1.1.3.2
Упростим числитель.
Этап 1.1.3.2.1
Упростим каждый член.
Этап 1.1.3.2.1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.1.3.2.1.1.1
Применим свойство дистрибутивности.
Этап 1.1.3.2.1.1.2
Применим свойство дистрибутивности.
Этап 1.1.3.2.1.1.3
Применим свойство дистрибутивности.
Этап 1.1.3.2.1.2
Упростим и объединим подобные члены.
Этап 1.1.3.2.1.2.1
Упростим каждый член.
Этап 1.1.3.2.1.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.3.2.1.2.1.2
Умножим на , сложив экспоненты.
Этап 1.1.3.2.1.2.1.2.1
Перенесем .
Этап 1.1.3.2.1.2.1.2.2
Умножим на .
Этап 1.1.3.2.1.2.1.3
Перенесем влево от .
Этап 1.1.3.2.1.2.1.4
Умножим на .
Этап 1.1.3.2.1.2.1.5
Умножим на .
Этап 1.1.3.2.1.2.2
Вычтем из .
Этап 1.1.3.2.1.3
Умножим на .
Этап 1.1.3.2.1.4
Умножим на .
Этап 1.1.3.2.2
Вычтем из .
Этап 1.1.3.2.3
Добавим и .
Этап 1.1.3.2.4
Вычтем из .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Решим уравнение относительно .
Этап 2.3.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.3.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.3.3
Упростим.
Этап 2.3.3.1
Упростим числитель.
Этап 2.3.3.1.1
Возведем в степень .
Этап 2.3.3.1.2
Умножим .
Этап 2.3.3.1.2.1
Умножим на .
Этап 2.3.3.1.2.2
Умножим на .
Этап 2.3.3.1.3
Добавим и .
Этап 2.3.3.1.4
Перепишем в виде .
Этап 2.3.3.1.4.1
Вынесем множитель из .
Этап 2.3.3.1.4.2
Перепишем в виде .
Этап 2.3.3.1.5
Вынесем члены из-под знака корня.
Этап 2.3.3.2
Умножим на .
Этап 2.3.3.3
Упростим .
Этап 2.3.4
Упростим выражение, которое нужно решить для части значения .
Этап 2.3.4.1
Упростим числитель.
Этап 2.3.4.1.1
Возведем в степень .
Этап 2.3.4.1.2
Умножим .
Этап 2.3.4.1.2.1
Умножим на .
Этап 2.3.4.1.2.2
Умножим на .
Этап 2.3.4.1.3
Добавим и .
Этап 2.3.4.1.4
Перепишем в виде .
Этап 2.3.4.1.4.1
Вынесем множитель из .
Этап 2.3.4.1.4.2
Перепишем в виде .
Этап 2.3.4.1.5
Вынесем члены из-под знака корня.
Этап 2.3.4.2
Умножим на .
Этап 2.3.4.3
Упростим .
Этап 2.3.4.4
Заменим на .
Этап 2.3.5
Упростим выражение, которое нужно решить для части значения .
Этап 2.3.5.1
Упростим числитель.
Этап 2.3.5.1.1
Возведем в степень .
Этап 2.3.5.1.2
Умножим .
Этап 2.3.5.1.2.1
Умножим на .
Этап 2.3.5.1.2.2
Умножим на .
Этап 2.3.5.1.3
Добавим и .
Этап 2.3.5.1.4
Перепишем в виде .
Этап 2.3.5.1.4.1
Вынесем множитель из .
Этап 2.3.5.1.4.2
Перепишем в виде .
Этап 2.3.5.1.5
Вынесем члены из-под знака корня.
Этап 2.3.5.2
Умножим на .
Этап 2.3.5.3
Упростим .
Этап 2.3.5.4
Заменим на .
Этап 2.3.6
Окончательный ответ является комбинацией обоих решений.
Этап 3
Этап 3.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.2
Решим относительно .
Этап 3.2.1
Приравняем к .
Этап 3.2.2
Добавим к обеим частям уравнения.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Упростим числитель.
Этап 4.1.2.1.1
Перепишем в виде .
Этап 4.1.2.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 4.1.2.1.2.1
Применим свойство дистрибутивности.
Этап 4.1.2.1.2.2
Применим свойство дистрибутивности.
Этап 4.1.2.1.2.3
Применим свойство дистрибутивности.
Этап 4.1.2.1.3
Упростим и объединим подобные члены.
Этап 4.1.2.1.3.1
Упростим каждый член.
Этап 4.1.2.1.3.1.1
Умножим на .
Этап 4.1.2.1.3.1.2
Перенесем влево от .
Этап 4.1.2.1.3.1.3
Объединим, используя правило умножения для радикалов.
Этап 4.1.2.1.3.1.4
Умножим на .
Этап 4.1.2.1.3.1.5
Перепишем в виде .
Этап 4.1.2.1.3.1.6
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.1.2.1.3.2
Добавим и .
Этап 4.1.2.1.3.3
Добавим и .
Этап 4.1.2.1.4
Применим свойство дистрибутивности.
Этап 4.1.2.1.5
Умножим на .
Этап 4.1.2.1.6
Вычтем из .
Этап 4.1.2.1.7
Добавим и .
Этап 4.1.2.1.8
Вычтем из .
Этап 4.1.2.2
Упростим знаменатель.
Этап 4.1.2.2.1
Вычтем из .
Этап 4.1.2.2.2
Добавим и .
Этап 4.1.2.3
Умножим на .
Этап 4.1.2.4
Объединим и упростим знаменатель.
Этап 4.1.2.4.1
Умножим на .
Этап 4.1.2.4.2
Возведем в степень .
Этап 4.1.2.4.3
Возведем в степень .
Этап 4.1.2.4.4
Применим правило степени для объединения показателей.
Этап 4.1.2.4.5
Добавим и .
Этап 4.1.2.4.6
Перепишем в виде .
Этап 4.1.2.4.6.1
С помощью запишем в виде .
Этап 4.1.2.4.6.2
Применим правило степени и перемножим показатели, .
Этап 4.1.2.4.6.3
Объединим и .
Этап 4.1.2.4.6.4
Сократим общий множитель .
Этап 4.1.2.4.6.4.1
Сократим общий множитель.
Этап 4.1.2.4.6.4.2
Перепишем это выражение.
Этап 4.1.2.4.6.5
Найдем экспоненту.
Этап 4.1.2.5
Применим свойство дистрибутивности.
Этап 4.1.2.6
Умножим .
Этап 4.1.2.6.1
Возведем в степень .
Этап 4.1.2.6.2
Возведем в степень .
Этап 4.1.2.6.3
Применим правило степени для объединения показателей.
Этап 4.1.2.6.4
Добавим и .
Этап 4.1.2.7
Упростим каждый член.
Этап 4.1.2.7.1
Перепишем в виде .
Этап 4.1.2.7.1.1
С помощью запишем в виде .
Этап 4.1.2.7.1.2
Применим правило степени и перемножим показатели, .
Этап 4.1.2.7.1.3
Объединим и .
Этап 4.1.2.7.1.4
Сократим общий множитель .
Этап 4.1.2.7.1.4.1
Сократим общий множитель.
Этап 4.1.2.7.1.4.2
Перепишем это выражение.
Этап 4.1.2.7.1.5
Найдем экспоненту.
Этап 4.1.2.7.2
Умножим на .
Этап 4.1.2.8
Сократим общий множитель и .
Этап 4.1.2.8.1
Вынесем множитель из .
Этап 4.1.2.8.2
Вынесем множитель из .
Этап 4.1.2.8.3
Вынесем множитель из .
Этап 4.1.2.8.4
Сократим общие множители.
Этап 4.1.2.8.4.1
Вынесем множитель из .
Этап 4.1.2.8.4.2
Сократим общий множитель.
Этап 4.1.2.8.4.3
Перепишем это выражение.
Этап 4.1.2.8.4.4
Разделим на .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Упростим числитель.
Этап 4.2.2.1.1
Перепишем в виде .
Этап 4.2.2.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 4.2.2.1.2.1
Применим свойство дистрибутивности.
Этап 4.2.2.1.2.2
Применим свойство дистрибутивности.
Этап 4.2.2.1.2.3
Применим свойство дистрибутивности.
Этап 4.2.2.1.3
Упростим и объединим подобные члены.
Этап 4.2.2.1.3.1
Упростим каждый член.
Этап 4.2.2.1.3.1.1
Умножим на .
Этап 4.2.2.1.3.1.2
Умножим на .
Этап 4.2.2.1.3.1.3
Умножим на .
Этап 4.2.2.1.3.1.4
Умножим .
Этап 4.2.2.1.3.1.4.1
Умножим на .
Этап 4.2.2.1.3.1.4.2
Умножим на .
Этап 4.2.2.1.3.1.4.3
Возведем в степень .
Этап 4.2.2.1.3.1.4.4
Возведем в степень .
Этап 4.2.2.1.3.1.4.5
Применим правило степени для объединения показателей.
Этап 4.2.2.1.3.1.4.6
Добавим и .
Этап 4.2.2.1.3.1.5
Перепишем в виде .
Этап 4.2.2.1.3.1.5.1
С помощью запишем в виде .
Этап 4.2.2.1.3.1.5.2
Применим правило степени и перемножим показатели, .
Этап 4.2.2.1.3.1.5.3
Объединим и .
Этап 4.2.2.1.3.1.5.4
Сократим общий множитель .
Этап 4.2.2.1.3.1.5.4.1
Сократим общий множитель.
Этап 4.2.2.1.3.1.5.4.2
Перепишем это выражение.
Этап 4.2.2.1.3.1.5.5
Найдем экспоненту.
Этап 4.2.2.1.3.2
Добавим и .
Этап 4.2.2.1.3.3
Вычтем из .
Этап 4.2.2.1.4
Применим свойство дистрибутивности.
Этап 4.2.2.1.5
Умножим на .
Этап 4.2.2.1.6
Умножим на .
Этап 4.2.2.1.7
Вычтем из .
Этап 4.2.2.1.8
Добавим и .
Этап 4.2.2.1.9
Добавим и .
Этап 4.2.2.2
Упростим знаменатель.
Этап 4.2.2.2.1
Вычтем из .
Этап 4.2.2.2.2
Вычтем из .
Этап 4.2.2.3
Вынесем знак минуса перед дробью.
Этап 4.2.2.4
Умножим на .
Этап 4.2.2.5
Объединим и упростим знаменатель.
Этап 4.2.2.5.1
Умножим на .
Этап 4.2.2.5.2
Возведем в степень .
Этап 4.2.2.5.3
Возведем в степень .
Этап 4.2.2.5.4
Применим правило степени для объединения показателей.
Этап 4.2.2.5.5
Добавим и .
Этап 4.2.2.5.6
Перепишем в виде .
Этап 4.2.2.5.6.1
С помощью запишем в виде .
Этап 4.2.2.5.6.2
Применим правило степени и перемножим показатели, .
Этап 4.2.2.5.6.3
Объединим и .
Этап 4.2.2.5.6.4
Сократим общий множитель .
Этап 4.2.2.5.6.4.1
Сократим общий множитель.
Этап 4.2.2.5.6.4.2
Перепишем это выражение.
Этап 4.2.2.5.6.5
Найдем экспоненту.
Этап 4.2.2.6
Применим свойство дистрибутивности.
Этап 4.2.2.7
Умножим .
Этап 4.2.2.7.1
Возведем в степень .
Этап 4.2.2.7.2
Возведем в степень .
Этап 4.2.2.7.3
Применим правило степени для объединения показателей.
Этап 4.2.2.7.4
Добавим и .
Этап 4.2.2.8
Упростим каждый член.
Этап 4.2.2.8.1
Перепишем в виде .
Этап 4.2.2.8.1.1
С помощью запишем в виде .
Этап 4.2.2.8.1.2
Применим правило степени и перемножим показатели, .
Этап 4.2.2.8.1.3
Объединим и .
Этап 4.2.2.8.1.4
Сократим общий множитель .
Этап 4.2.2.8.1.4.1
Сократим общий множитель.
Этап 4.2.2.8.1.4.2
Перепишем это выражение.
Этап 4.2.2.8.1.5
Найдем экспоненту.
Этап 4.2.2.8.2
Умножим на .
Этап 4.2.2.9
Упростим члены.
Этап 4.2.2.9.1
Сократим общий множитель и .
Этап 4.2.2.9.1.1
Вынесем множитель из .
Этап 4.2.2.9.1.2
Вынесем множитель из .
Этап 4.2.2.9.1.3
Вынесем множитель из .
Этап 4.2.2.9.1.4
Сократим общие множители.
Этап 4.2.2.9.1.4.1
Вынесем множитель из .
Этап 4.2.2.9.1.4.2
Сократим общий множитель.
Этап 4.2.2.9.1.4.3
Перепишем это выражение.
Этап 4.2.2.9.1.4.4
Разделим на .
Этап 4.2.2.9.2
Применим свойство дистрибутивности.
Этап 4.2.2.9.3
Умножим.
Этап 4.2.2.9.3.1
Умножим на .
Этап 4.2.2.9.3.2
Умножим на .
Этап 4.3
Найдем значение в .
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим.
Этап 4.3.2.1
Вычтем из .
Этап 4.3.2.2
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.4
Перечислим все точки.
Этап 5