Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.2
Перенесем влево от .
Этап 1.1.2.3
По правилу суммы производная по имеет вид .
Этап 1.1.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.6
Упростим выражение.
Этап 1.1.2.6.1
Добавим и .
Этап 1.1.2.6.2
Умножим на .
Этап 1.1.3
Возведем в степень .
Этап 1.1.4
Применим правило степени для объединения показателей.
Этап 1.1.5
Добавим и .
Этап 1.1.6
Упростим.
Этап 1.1.6.1
Применим свойство дистрибутивности.
Этап 1.1.6.2
Применим свойство дистрибутивности.
Этап 1.1.6.3
Упростим числитель.
Этап 1.1.6.3.1
Упростим каждый член.
Этап 1.1.6.3.1.1
Умножим на , сложив экспоненты.
Этап 1.1.6.3.1.1.1
Перенесем .
Этап 1.1.6.3.1.1.2
Умножим на .
Этап 1.1.6.3.1.1.2.1
Возведем в степень .
Этап 1.1.6.3.1.1.2.2
Применим правило степени для объединения показателей.
Этап 1.1.6.3.1.1.3
Добавим и .
Этап 1.1.6.3.1.2
Умножим на .
Этап 1.1.6.3.2
Объединим противоположные члены в .
Этап 1.1.6.3.2.1
Вычтем из .
Этап 1.1.6.3.2.2
Добавим и .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Разделим каждый член на и упростим.
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Этап 2.3.2.1
Сократим общий множитель .
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Этап 2.3.3.1
Разделим на .
Этап 3
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Возведение в любую положительную степень дает .
Этап 4.1.2.2
Упростим знаменатель.
Этап 4.1.2.2.1
Возведение в любую положительную степень дает .
Этап 4.1.2.2.2
Добавим и .
Этап 4.1.2.3
Разделим на .
Этап 4.2
Перечислим все точки.
Этап 5