Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.4
Упростим выражение.
Этап 1.1.2.4.1
Добавим и .
Этап 1.1.2.4.2
Перенесем влево от .
Этап 1.1.2.5
По правилу суммы производная по имеет вид .
Этап 1.1.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.7
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.8
Упростим выражение.
Этап 1.1.2.8.1
Добавим и .
Этап 1.1.2.8.2
Умножим на .
Этап 1.1.3
Упростим.
Этап 1.1.3.1
Применим свойство дистрибутивности.
Этап 1.1.3.2
Применим свойство дистрибутивности.
Этап 1.1.3.3
Применим свойство дистрибутивности.
Этап 1.1.3.4
Упростим числитель.
Этап 1.1.3.4.1
Упростим каждый член.
Этап 1.1.3.4.1.1
Умножим на , сложив экспоненты.
Этап 1.1.3.4.1.1.1
Перенесем .
Этап 1.1.3.4.1.1.2
Умножим на .
Этап 1.1.3.4.1.1.2.1
Возведем в степень .
Этап 1.1.3.4.1.1.2.2
Применим правило степени для объединения показателей.
Этап 1.1.3.4.1.1.3
Добавим и .
Этап 1.1.3.4.1.2
Умножим на .
Этап 1.1.3.4.1.3
Умножим на .
Этап 1.1.3.4.2
Вычтем из .
Этап 1.1.3.5
Вынесем множитель из .
Этап 1.1.3.5.1
Вынесем множитель из .
Этап 1.1.3.5.2
Вынесем множитель из .
Этап 1.1.3.5.3
Вынесем множитель из .
Этап 1.1.3.5.4
Вынесем множитель из .
Этап 1.1.3.5.5
Вынесем множитель из .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Решим уравнение относительно .
Этап 2.3.1
Разделим каждый член на и упростим.
Этап 2.3.1.1
Разделим каждый член на .
Этап 2.3.1.2
Упростим левую часть.
Этап 2.3.1.2.1
Сократим общий множитель .
Этап 2.3.1.2.1.1
Сократим общий множитель.
Этап 2.3.1.2.1.2
Разделим на .
Этап 2.3.1.3
Упростим правую часть.
Этап 2.3.1.3.1
Разделим на .
Этап 2.3.2
Разложим левую часть уравнения на множители.
Этап 2.3.2.1
Разложим на множители, используя теорему о рациональных корнях.
Этап 2.3.2.1.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 2.3.2.1.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 2.3.2.1.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 2.3.2.1.3.1
Подставим в многочлен.
Этап 2.3.2.1.3.2
Возведем в степень .
Этап 2.3.2.1.3.3
Возведем в степень .
Этап 2.3.2.1.3.4
Умножим на .
Этап 2.3.2.1.3.5
Вычтем из .
Этап 2.3.2.1.3.6
Добавим и .
Этап 2.3.2.1.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 2.3.2.1.5
Разделим на .
Этап 2.3.2.1.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
+ | - | + | + |
Этап 2.3.2.1.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | - | + | + |
Этап 2.3.2.1.5.3
Умножим новое частное на делитель.
+ | - | + | + | ||||||||
+ | + |
Этап 2.3.2.1.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | - | + | + | ||||||||
- | - |
Этап 2.3.2.1.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | - | + | + | ||||||||
- | - | ||||||||||
- |
Этап 2.3.2.1.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Этап 2.3.2.1.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Этап 2.3.2.1.5.8
Умножим новое частное на делитель.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
- | - |
Этап 2.3.2.1.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + |
Этап 2.3.2.1.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ |
Этап 2.3.2.1.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Этап 2.3.2.1.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Этап 2.3.2.1.5.13
Умножим новое частное на делитель.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Этап 2.3.2.1.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Этап 2.3.2.1.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Этап 2.3.2.1.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 2.3.2.1.6
Запишем в виде набора множителей.
Этап 2.3.2.2
Разложим на множители, используя правило полных квадратов.
Этап 2.3.2.2.1
Перепишем в виде .
Этап 2.3.2.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 2.3.2.2.3
Перепишем многочлен.
Этап 2.3.2.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 2.3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3.4
Приравняем к , затем решим относительно .
Этап 2.3.4.1
Приравняем к .
Этап 2.3.4.2
Вычтем из обеих частей уравнения.
Этап 2.3.5
Приравняем к , затем решим относительно .
Этап 2.3.5.1
Приравняем к .
Этап 2.3.5.2
Решим относительно .
Этап 2.3.5.2.1
Приравняем к .
Этап 2.3.5.2.2
Добавим к обеим частям уравнения.
Этап 2.3.6
Окончательным решением являются все значения, при которых верно.
Этап 3
Этап 3.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.2
Решим относительно .
Этап 3.2.1
Приравняем к .
Этап 3.2.2
Добавим к обеим частям уравнения.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Упростим числитель.
Этап 4.1.2.1.1
Возведем в степень .
Этап 4.1.2.1.2
Вычтем из .
Этап 4.1.2.2
Упростим выражение.
Этап 4.1.2.2.1
Вычтем из .
Этап 4.1.2.2.2
Разделим на .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Вычтем из .
Этап 4.2.2.2
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.3
Перечислим все точки.
Этап 5