Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных f(x)=3^(-x)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.1.3
Заменим все вхождения на .
Этап 1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Умножим на .
Этап 1.1.2.3.2
Перенесем влево от .
Этап 1.1.2.3.3
Перепишем в виде .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Нет решения
Нет решения
Этап 3
В области определения исходной задачи нет значений , при которых производная равна или не определена.
Критические точки не найдены
Этап 4
Нет точек, в которых производная была бы равна или не определена. проверяется на возрастание или убывание на интервале .
Этап 5
Подставим любое число, например , из интервала в производную , чтобы проверить, является результат отрицательным или положительным. Если результат отрицательный, график убывает на интервале . Если результат положительный, график возрастает на интервале .
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Умножим на .
Этап 5.2.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Изменим порядок и .
Этап 5.2.3.2
Упростим путем переноса под логарифм.
Этап 5.2.4
Окончательный ответ: .
Этап 6
Результат подстановки в равен и является отрицательным, поэтому график убывает на интервале .
Убывание на
Этап 7
Убывание на интервале означает, что функция постоянно убывает.
Всегда убывающие
Этап 8