Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных f(x)=1+5/x-9/(x^2)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Перепишем в виде .
Этап 1.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.4
Умножим на .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Перепишем в виде .
Этап 1.1.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3.3
Заменим все вхождения на .
Этап 1.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.5
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.1.3.5.1
Применим правило степени и перемножим показатели, .
Этап 1.1.3.5.2
Умножим на .
Этап 1.1.3.6
Умножим на .
Этап 1.1.3.7
Возведем в степень .
Этап 1.1.3.8
Применим правило степени для объединения показателей.
Этап 1.1.3.9
Вычтем из .
Этап 1.1.3.10
Умножим на .
Этап 1.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.1.4.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.1.4.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1.4.3.1
Объединим и .
Этап 1.1.4.3.2
Вынесем знак минуса перед дробью.
Этап 1.1.4.3.3
Вычтем из .
Этап 1.1.4.3.4
Объединим и .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 2.2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.2.6
Множители  — , то есть , умноженный сам на себя раз.
встречается раз.
Этап 2.2.7
Множители  — , то есть , умноженный сам на себя раз.
встречается раз.
Этап 2.2.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.2.9
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.9.1
Умножим на .
Этап 2.2.9.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.2.9.2.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 2.2.9.2.1.1
Возведем в степень .
Этап 2.2.9.2.1.2
Применим правило степени для объединения показателей.
Этап 2.2.9.2.2
Добавим и .
Этап 2.3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Умножим каждый член на .
Этап 2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.3.2.1.1.2
Вынесем множитель из .
Этап 2.3.2.1.1.3
Сократим общий множитель.
Этап 2.3.2.1.1.4
Перепишем это выражение.
Этап 2.3.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.2.1
Сократим общий множитель.
Этап 2.3.2.1.2.2
Перепишем это выражение.
Этап 2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Умножим на .
Этап 2.4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Вычтем из обеих частей уравнения.
Этап 2.4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Разделим каждый член на .
Этап 2.4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.1.1
Сократим общий множитель.
Этап 2.4.2.2.1.2
Разделим на .
Этап 2.4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 3
Значения, при которых производная равна : .
Этап 4
Найдем, где производная не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Перепишем в виде .
Этап 4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2.2.3
Плюс или минус равно .
Этап 4.3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4.4.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.4.2.1
Перепишем в виде .
Этап 4.4.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 5
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Разделим на .
Этап 6.2.1.3
Умножим на .
Этап 6.2.1.4
Возведем в степень .
Этап 6.2.1.5
Разделим на .
Этап 6.2.2
Вычтем из .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Разделим на .
Этап 7.2.1.3
Умножим на .
Этап 7.2.1.4
Возведем в степень .
Этап 7.2.1.5
Разделим на .
Этап 7.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 8
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Возведем в степень .
Этап 8.2.1.2
Разделим на .
Этап 8.2.1.3
Умножим на .
Этап 8.2.1.4
Возведем в степень .
Этап 8.2.1.5
Разделим на .
Этап 8.2.2
Добавим и .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 9
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 10