Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных f(x)=(x-1)/(x^2+1)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.2.4.1
Добавим и .
Этап 1.1.2.4.2
Умножим на .
Этап 1.1.2.5
По правилу суммы производная по имеет вид .
Этап 1.1.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.7
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.8
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.2.8.1
Добавим и .
Этап 1.1.2.8.2
Умножим на .
Этап 1.1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Применим свойство дистрибутивности.
Этап 1.1.3.2
Применим свойство дистрибутивности.
Этап 1.1.3.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1.1.1
Перенесем .
Этап 1.1.3.3.1.1.2
Умножим на .
Этап 1.1.3.3.1.2
Умножим на .
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.4
Изменим порядок членов.
Этап 1.1.3.5
Вынесем множитель из .
Этап 1.1.3.6
Вынесем множитель из .
Этап 1.1.3.7
Вынесем множитель из .
Этап 1.1.3.8
Перепишем в виде .
Этап 1.1.3.9
Вынесем множитель из .
Этап 1.1.3.10
Перепишем в виде .
Этап 1.1.3.11
Вынесем знак минуса перед дробью.
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.3.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.3.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.1
Возведем в степень .
Этап 2.3.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.2.1
Умножим на .
Этап 2.3.3.1.2.2
Умножим на .
Этап 2.3.3.1.3
Добавим и .
Этап 2.3.3.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.4.1
Вынесем множитель из .
Этап 2.3.3.1.4.2
Перепишем в виде .
Этап 2.3.3.1.5
Вынесем члены из-под знака корня.
Этап 2.3.3.2
Умножим на .
Этап 2.3.3.3
Упростим .
Этап 2.3.4
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.3.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.4.1.1
Возведем в степень .
Этап 2.3.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.3.4.1.2.1
Умножим на .
Этап 2.3.4.1.2.2
Умножим на .
Этап 2.3.4.1.3
Добавим и .
Этап 2.3.4.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.3.4.1.4.1
Вынесем множитель из .
Этап 2.3.4.1.4.2
Перепишем в виде .
Этап 2.3.4.1.5
Вынесем члены из-под знака корня.
Этап 2.3.4.2
Умножим на .
Этап 2.3.4.3
Упростим .
Этап 2.3.4.4
Заменим на .
Этап 2.3.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.1
Возведем в степень .
Этап 2.3.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.2.1
Умножим на .
Этап 2.3.5.1.2.2
Умножим на .
Этап 2.3.5.1.3
Добавим и .
Этап 2.3.5.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1.4.1
Вынесем множитель из .
Этап 2.3.5.1.4.2
Перепишем в виде .
Этап 2.3.5.1.5
Вынесем члены из-под знака корня.
Этап 2.3.5.2
Умножим на .
Этап 2.3.5.3
Упростим .
Этап 2.3.5.4
Заменим на .
Этап 2.3.6
Окончательный ответ является комбинацией обоих решений.
Этап 3
Значения, при которых производная равна : .
Этап 4
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 5
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.1.3
Добавим и .
Этап 5.2.1.4
Вычтем из .
Этап 5.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Возведем в степень .
Этап 5.2.2.2
Добавим и .
Этап 5.2.2.3
Возведем в степень .
Этап 5.2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.2.3.1
Разделим на .
Этап 5.2.3.2
Умножим на .
Этап 5.2.4
Окончательный ответ: .
Этап 5.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Вычтем из .
Этап 6.2.1.4
Вычтем из .
Этап 6.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Возведем в степень .
Этап 6.2.2.2
Добавим и .
Этап 6.2.2.3
Возведем в степень .
Этап 6.2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Разделим на .
Этап 6.2.3.2
Умножим на .
Этап 6.2.4
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.1.3
Вычтем из .
Этап 7.2.1.4
Вычтем из .
Этап 7.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Возведем в степень .
Этап 7.2.2.2
Добавим и .
Этап 7.2.2.3
Возведем в степень .
Этап 7.2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 7.2.3.1
Разделим на .
Этап 7.2.3.2
Умножим на .
Этап 7.2.4
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 9