Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Найдем первую производную.
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Найдем значение .
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.1.3
Найдем значение .
Этап 1.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3.3
Умножим на .
Этап 1.1.1.4
Найдем значение .
Этап 1.1.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.4.3
Умножим на .
Этап 1.1.1.5
Продифференцируем, используя правило константы.
Этап 1.1.1.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.5.2
Добавим и .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Этап 1.2.2.1
Вынесем множитель из .
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Вынесем множитель из .
Этап 1.2.2.1.3
Вынесем множитель из .
Этап 1.2.2.1.4
Вынесем множитель из .
Этап 1.2.2.1.5
Вынесем множитель из .
Этап 1.2.2.2
Разложим на множители.
Этап 1.2.2.2.1
Разложим на множители, используя метод группировки.
Этап 1.2.2.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.2.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2.2.2
Избавимся от ненужных скобок.
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Добавим к обеим частям уравнения.
Этап 1.2.5
Приравняем к , затем решим относительно .
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Вычтем из обеих частей уравнения.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Найдем значения, при которых производная не определена.
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Этап 1.4.1
Найдем значение в .
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Этап 1.4.1.2.1
Упростим каждый член.
Этап 1.4.1.2.1.1
Умножим на , сложив экспоненты.
Этап 1.4.1.2.1.1.1
Умножим на .
Этап 1.4.1.2.1.1.1.1
Возведем в степень .
Этап 1.4.1.2.1.1.1.2
Применим правило степени для объединения показателей.
Этап 1.4.1.2.1.1.2
Добавим и .
Этап 1.4.1.2.1.2
Возведем в степень .
Этап 1.4.1.2.1.3
Возведем в степень .
Этап 1.4.1.2.1.4
Умножим на .
Этап 1.4.1.2.1.5
Умножим на .
Этап 1.4.1.2.2
Упростим путем сложения и вычитания.
Этап 1.4.1.2.2.1
Добавим и .
Этап 1.4.1.2.2.2
Вычтем из .
Этап 1.4.1.2.2.3
Добавим и .
Этап 1.4.2
Найдем значение в .
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Этап 1.4.2.2.1
Упростим каждый член.
Этап 1.4.2.2.1.1
Возведем в степень .
Этап 1.4.2.2.1.2
Умножим на .
Этап 1.4.2.2.1.3
Возведем в степень .
Этап 1.4.2.2.1.4
Умножим на .
Этап 1.4.2.2.1.5
Умножим на .
Этап 1.4.2.2.2
Упростим путем добавления чисел.
Этап 1.4.2.2.2.1
Добавим и .
Этап 1.4.2.2.2.2
Добавим и .
Этап 1.4.2.2.2.3
Добавим и .
Этап 1.4.3
Перечислим все точки.
Этап 2
Исключим точки, которые не принадлежат данному интервалу.
Этап 3
Этап 3.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 3.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 3.2.1
Заменим в этом выражении переменную на .
Этап 3.2.2
Упростим результат.
Этап 3.2.2.1
Упростим каждый член.
Этап 3.2.2.1.1
Возведем в степень .
Этап 3.2.2.1.2
Умножим на .
Этап 3.2.2.1.3
Умножим на .
Этап 3.2.2.2
Упростим путем вычитания чисел.
Этап 3.2.2.2.1
Вычтем из .
Этап 3.2.2.2.2
Вычтем из .
Этап 3.2.2.3
Окончательный ответ: .
Этап 3.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Этап 3.3.2.1
Упростим каждый член.
Этап 3.3.2.1.1
Возведение в любую положительную степень дает .
Этап 3.3.2.1.2
Умножим на .
Этап 3.3.2.1.3
Умножим на .
Этап 3.3.2.2
Упростим путем сложения и вычитания.
Этап 3.3.2.2.1
Добавим и .
Этап 3.3.2.2.2
Вычтем из .
Этап 3.3.2.3
Окончательный ответ: .
Этап 3.4
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 3.4.1
Заменим в этом выражении переменную на .
Этап 3.4.2
Упростим результат.
Этап 3.4.2.1
Упростим каждый член.
Этап 3.4.2.1.1
Возведем в степень .
Этап 3.4.2.1.2
Умножим на .
Этап 3.4.2.1.3
Умножим на .
Этап 3.4.2.2
Упростим путем сложения и вычитания.
Этап 3.4.2.2.1
Добавим и .
Этап 3.4.2.2.2
Вычтем из .
Этап 3.4.2.3
Окончательный ответ: .
Этап 3.5
Поскольку первая производная меняет знак с положительного на отрицательный в окрестности , — локальный максимум.
— локальный максимум
Этап 3.6
Поскольку первая производная меняет знак с отрицательного на положительный в окрестности , — локальный минимум.
— локальный минимум
Этап 3.7
Это локальные экстремумы .
— локальный максимум
— локальный минимум
— локальный максимум
— локальный минимум
Этап 4
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Нет абсолютного максимума
Абсолютный минимум:
Этап 5