Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Производная по равна .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
Перепишем в виде .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Перепишем уравнение в виде .
Этап 5.2
Разделим каждый член на и упростим.
Этап 5.2.1
Разделим каждый член на .
Этап 5.2.2
Упростим левую часть.
Этап 5.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.2.2.2
Сократим общий множитель .
Этап 5.2.2.2.1
Сократим общий множитель.
Этап 5.2.2.2.2
Разделим на .
Этап 5.2.3
Упростим правую часть.
Этап 5.2.3.1
Сократим общий множитель и .
Этап 5.2.3.1.1
Перепишем в виде .
Этап 5.2.3.1.2
Вынесем знак минуса перед дробью.
Этап 5.2.3.2
Переведем в .
Этап 6
Заменим на .
Этап 7
Этап 7.1
Разделим каждый член на и упростим.
Этап 7.1.1
Разделим каждый член на .
Этап 7.1.2
Упростим левую часть.
Этап 7.1.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 7.1.2.2
Разделим на .
Этап 7.1.3
Упростим правую часть.
Этап 7.1.3.1
Разделим на .
Этап 7.2
Множество значений косеканса: и . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Этап 8
No points that set are on the real number plane.
No Points
Этап 9