Математический анализ Примеры

Определить, где dy/dx равняется нулю y=x^2+7.5x+4
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1.1
По правилу суммы производная по имеет вид .
Этап 3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Умножим на .
Этап 3.3
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.2
Добавим и .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .
Этап 6
Примем , затем решим относительно через .
Нажмите для увеличения количества этапов...
Этап 6.1
Вычтем из обеих частей уравнения.
Этап 6.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Разделим каждый член на .
Этап 6.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.1.2
Разделим на .
Этап 6.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Разделим на .
Этап 7
Упростим .
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Возведем в степень .
Этап 7.1.2
Умножим на .
Этап 7.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Вычтем из .
Этап 7.2.2
Добавим и .
Этап 8
Найдем точки, в которых .
Этап 9