Математический анализ Примеры

Найти горизонтальную касательную y=x^3-3x^2
Этап 1
Примем как функцию .
Этап 2
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 3
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Вынесем множитель из .
Этап 3.1.3
Вынесем множитель из .
Этап 3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.3
Приравняем к .
Этап 3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Добавим к обеим частям уравнения.
Этап 3.5
Окончательным решением являются все значения, при которых верно.
Этап 4
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Возведение в любую положительную степень дает .
Этап 4.2.1.2
Возведение в любую положительную степень дает .
Этап 4.2.1.3
Умножим на .
Этап 4.2.2
Добавим и .
Этап 4.2.3
Окончательный ответ: .
Этап 5
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Возведем в степень .
Этап 5.2.1.3
Умножим на .
Этап 5.2.2
Вычтем из .
Этап 5.2.3
Окончательный ответ: .
Этап 6
Горизонтальные касательные функции  ― .
Этап 7