Математический анализ Примеры

Найти горизонтальную касательную f(x)=x^3+1
Этап 1
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.4
Добавим и .
Этап 2
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Разделим каждый член на .
Этап 2.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Сократим общий множитель.
Этап 2.1.2.1.2
Разделим на .
Этап 2.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Разделим на .
Этап 2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.3
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перепишем в виде .
Этап 2.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.3.3
Плюс или минус равно .
Этап 3
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 3.1
Заменим в этом выражении переменную на .
Этап 3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Возведение в любую положительную степень дает .
Этап 3.2.2
Добавим и .
Этап 3.2.3
Окончательный ответ: .
Этап 4
Горизонтальная касательной к графику функции : .
Этап 5