Математический анализ Примеры

Найти горизонтальную касательную f(x)=2x^2-7x+5
Этап 1
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Умножим на .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.4.2
Добавим и .
Этап 2
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Добавим к обеим частям уравнения.
Этап 2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим каждый член на .
Этап 2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Сократим общий множитель.
Этап 2.2.2.1.2
Разделим на .
Этап 3
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 3.1
Заменим в этом выражении переменную на .
Этап 3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Применим правило умножения к .
Этап 3.2.1.2
Возведем в степень .
Этап 3.2.1.3
Возведем в степень .
Этап 3.2.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.4.1
Вынесем множитель из .
Этап 3.2.1.4.2
Сократим общий множитель.
Этап 3.2.1.4.3
Перепишем это выражение.
Этап 3.2.1.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.5.1
Объединим и .
Этап 3.2.1.5.2
Умножим на .
Этап 3.2.1.6
Вынесем знак минуса перед дробью.
Этап 3.2.2
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Умножим на .
Этап 3.2.2.2
Умножим на .
Этап 3.2.2.3
Запишем в виде дроби со знаменателем .
Этап 3.2.2.4
Умножим на .
Этап 3.2.2.5
Умножим на .
Этап 3.2.2.6
Изменим порядок множителей в .
Этап 3.2.2.7
Умножим на .
Этап 3.2.3
Объединим числители над общим знаменателем.
Этап 3.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Умножим на .
Этап 3.2.4.2
Умножим на .
Этап 3.2.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.2.5.1
Вычтем из .
Этап 3.2.5.2
Добавим и .
Этап 3.2.5.3
Вынесем знак минуса перед дробью.
Этап 3.2.6
Окончательный ответ: .
Этап 4
Горизонтальная касательной к графику функции : .
Этап 5