Математический анализ Примеры

Найти горизонтальную касательную 2cos(2x)
Этап 1
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2
Производная по равна .
Этап 1.2.3
Заменим все вхождения на .
Этап 1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Умножим на .
Этап 1.3.2
Поскольку является константой относительно , производная по равна .
Этап 1.3.3
Умножим на .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Умножим на .
Этап 2
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Разделим каждый член на .
Этап 2.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Сократим общий множитель.
Этап 2.1.2.1.2
Разделим на .
Этап 2.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Разделим на .
Этап 2.2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Точное значение : .
Этап 2.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Разделим каждый член на .
Этап 2.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1.1
Сократим общий множитель.
Этап 2.4.2.1.2
Разделим на .
Этап 2.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.4.3.1
Разделим на .
Этап 2.5
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 2.6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.6.1.1
Умножим на .
Этап 2.6.1.2
Добавим и .
Этап 2.6.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.6.2.1
Разделим каждый член на .
Этап 2.6.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.6.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.6.2.2.1.1
Сократим общий множитель.
Этап 2.6.2.2.1.2
Разделим на .
Этап 2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 2.7.1
Период функции можно вычислить по формуле .
Этап 2.7.2
Заменим на в формуле периода.
Этап 2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.7.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.7.4.1
Сократим общий множитель.
Этап 2.7.4.2
Разделим на .
Этап 2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 2.9
Объединим ответы.
, для любого целого
, для любого целого
Этап 3
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 3.1

Этап 3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.2.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 3.2.3
Точное значение : .
Этап 3.2.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Умножим на .
Этап 3.2.4.2
Умножим на .
Этап 3.2.5
Окончательный ответ: .
Этап 4
Горизонтальная касательной к графику функции : .
Этап 5