Введите задачу...
Математический анализ Примеры
Этап 1
Set each solution of as a function of .
Этап 2
Этап 2.1
Продифференцируем обе части уравнения.
Этап 2.2
Продифференцируем левую часть уравнения.
Этап 2.2.1
По правилу суммы производная по имеет вид .
Этап 2.2.2
Найдем значение .
Этап 2.2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.1.3
Заменим все вхождения на .
Этап 2.2.2.2
Перепишем в виде .
Этап 2.2.3
Продифференцируем, используя правило степени.
Этап 2.2.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3.2
Изменим порядок членов.
Этап 2.3
Продифференцируем правую часть уравнения.
Этап 2.3.1
По правилу суммы производная по имеет вид .
Этап 2.3.2
Найдем значение .
Этап 2.3.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.2.1.3
Заменим все вхождения на .
Этап 2.3.2.2
Перепишем в виде .
Этап 2.3.3
Найдем значение .
Этап 2.3.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.3
Умножим на .
Этап 2.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 2.5
Решим относительно .
Этап 2.5.1
Вычтем из обеих частей уравнения.
Этап 2.5.2
Вычтем из обеих частей уравнения.
Этап 2.5.3
Вынесем множитель из .
Этап 2.5.3.1
Вынесем множитель из .
Этап 2.5.3.2
Вынесем множитель из .
Этап 2.5.3.3
Вынесем множитель из .
Этап 2.5.4
Разделим каждый член на и упростим.
Этап 2.5.4.1
Разделим каждый член на .
Этап 2.5.4.2
Упростим левую часть.
Этап 2.5.4.2.1
Сократим общий множитель .
Этап 2.5.4.2.1.1
Сократим общий множитель.
Этап 2.5.4.2.1.2
Перепишем это выражение.
Этап 2.5.4.2.2
Сократим общий множитель .
Этап 2.5.4.2.2.1
Сократим общий множитель.
Этап 2.5.4.2.2.2
Перепишем это выражение.
Этап 2.5.4.2.3
Сократим общий множитель .
Этап 2.5.4.2.3.1
Сократим общий множитель.
Этап 2.5.4.2.3.2
Разделим на .
Этап 2.5.4.3
Упростим правую часть.
Этап 2.5.4.3.1
Упростим каждый член.
Этап 2.5.4.3.1.1
Сократим общий множитель и .
Этап 2.5.4.3.1.1.1
Вынесем множитель из .
Этап 2.5.4.3.1.1.2
Сократим общие множители.
Этап 2.5.4.3.1.1.2.1
Вынесем множитель из .
Этап 2.5.4.3.1.1.2.2
Сократим общий множитель.
Этап 2.5.4.3.1.1.2.3
Перепишем это выражение.
Этап 2.5.4.3.1.2
Вынесем знак минуса перед дробью.
Этап 2.6
Заменим на .
Этап 3
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Разделим каждый член на и упростим.
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.2.2.2
Разделим на .
Этап 3.2.3
Упростим правую часть.
Этап 3.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.2.3.2
Разделим на .
Этап 3.3
Умножим обе части на .
Этап 3.4
Упростим.
Этап 3.4.1
Упростим левую часть.
Этап 3.4.1.1
Упростим .
Этап 3.4.1.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.4.1.1.2
Сократим общий множитель .
Этап 3.4.1.1.2.1
Вынесем множитель из .
Этап 3.4.1.1.2.2
Сократим общий множитель.
Этап 3.4.1.1.2.3
Перепишем это выражение.
Этап 3.4.1.1.3
Сократим общий множитель .
Этап 3.4.1.1.3.1
Сократим общий множитель.
Этап 3.4.1.1.3.2
Перепишем это выражение.
Этап 3.4.2
Упростим правую часть.
Этап 3.4.2.1
Упростим .
Этап 3.4.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.4.2.1.2
Умножим .
Этап 3.4.2.1.2.1
Объединим и .
Этап 3.4.2.1.2.2
Умножим на .
Этап 3.4.2.1.3
Сократим общий множитель .
Этап 3.4.2.1.3.1
Сократим общий множитель.
Этап 3.4.2.1.3.2
Перепишем это выражение.
Этап 3.5
Решим относительно .
Этап 3.5.1
Разделим каждый член на и упростим.
Этап 3.5.1.1
Разделим каждый член на .
Этап 3.5.1.2
Упростим левую часть.
Этап 3.5.1.2.1
Сократим общий множитель .
Этап 3.5.1.2.1.1
Сократим общий множитель.
Этап 3.5.1.2.1.2
Разделим на .
Этап 3.5.1.3
Упростим правую часть.
Этап 3.5.1.3.1
Разделим на .
Этап 3.5.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.5.3
Упростим .
Этап 3.5.3.1
Перепишем в виде .
Этап 3.5.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.5.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.5.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.5.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.5.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Этап 4.2.1
Умножим на .
Этап 4.2.2
Окончательный ответ: .
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Умножим на .
Этап 5.2.2
Окончательный ответ: .
Этап 6
The horizontal tangent lines are
Этап 7