Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 1.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 1.3
Упростим.
Этап 1.3.1
Упростим числитель.
Этап 1.3.1.1
Применим правило умножения к .
Этап 1.3.1.2
Возведем в степень .
Этап 1.3.1.3
Умножим на .
Этап 1.3.1.4
Умножим .
Этап 1.3.1.4.1
Умножим на .
Этап 1.3.1.4.2
Умножим на .
Этап 1.3.2
Умножим на .
Этап 1.4
Упростим выражение, которое нужно решить для части значения .
Этап 1.4.1
Упростим числитель.
Этап 1.4.1.1
Применим правило умножения к .
Этап 1.4.1.2
Возведем в степень .
Этап 1.4.1.3
Умножим на .
Этап 1.4.1.4
Умножим .
Этап 1.4.1.4.1
Умножим на .
Этап 1.4.1.4.2
Умножим на .
Этап 1.4.2
Умножим на .
Этап 1.4.3
Заменим на .
Этап 1.5
Упростим выражение, которое нужно решить для части значения .
Этап 1.5.1
Упростим числитель.
Этап 1.5.1.1
Применим правило умножения к .
Этап 1.5.1.2
Возведем в степень .
Этап 1.5.1.3
Умножим на .
Этап 1.5.1.4
Умножим .
Этап 1.5.1.4.1
Умножим на .
Этап 1.5.1.4.2
Умножим на .
Этап 1.5.2
Умножим на .
Этап 1.5.3
Заменим на .
Этап 1.6
Окончательный ответ является комбинацией обоих решений.
Этап 2
Set each solution of as a function of .
Этап 3
Этап 3.1
Продифференцируем обе части уравнения.
Этап 3.2
Продифференцируем левую часть уравнения.
Этап 3.2.1
По правилу суммы производная по имеет вид .
Этап 3.2.2
Найдем значение .
Этап 3.2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.2.1.3
Заменим все вхождения на .
Этап 3.2.2.2
Перепишем в виде .
Этап 3.2.3
Найдем значение .
Этап 3.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2.3.3
Перепишем в виде .
Этап 3.2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3.5
Умножим на .
Этап 3.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.2.5
Упростим.
Этап 3.2.5.1
Применим свойство дистрибутивности.
Этап 3.2.5.2
Добавим и .
Этап 3.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 3.5
Решим относительно .
Этап 3.5.1
Добавим к обеим частям уравнения.
Этап 3.5.2
Вынесем множитель из .
Этап 3.5.2.1
Вынесем множитель из .
Этап 3.5.2.2
Вынесем множитель из .
Этап 3.5.2.3
Вынесем множитель из .
Этап 3.5.3
Разделим каждый член на и упростим.
Этап 3.5.3.1
Разделим каждый член на .
Этап 3.5.3.2
Упростим левую часть.
Этап 3.5.3.2.1
Сократим общий множитель .
Этап 3.5.3.2.1.1
Сократим общий множитель.
Этап 3.5.3.2.1.2
Разделим на .
Этап 3.6
Заменим на .
Этап 4
The roots of the derivative cannot be found.
No horizontal tangent lines
Этап 5