Математический анализ Примеры

Найти горизонтальную касательную x^3+y^3=2xy
Этап 1
Set each solution of as a function of .
Этап 2
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем обе части уравнения.
Этап 2.2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
По правилу суммы производная по имеет вид .
Этап 2.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.1.3
Заменим все вхождения на .
Этап 2.2.2.2
Перепишем в виде .
Этап 2.3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.3
Перепишем в виде .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Умножим на .
Этап 2.3.6
Применим свойство дистрибутивности.
Этап 2.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 2.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Вычтем из обеих частей уравнения.
Этап 2.5.2
Вычтем из обеих частей уравнения.
Этап 2.5.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.5.3.1
Вынесем множитель из .
Этап 2.5.3.2
Вынесем множитель из .
Этап 2.5.3.3
Вынесем множитель из .
Этап 2.5.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.4.1
Разделим каждый член на .
Этап 2.5.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.5.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.4.2.1.1
Сократим общий множитель.
Этап 2.5.4.2.1.2
Разделим на .
Этап 2.5.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.5.4.3.1
Объединим числители над общим знаменателем.
Этап 2.6
Заменим на .
Этап 3
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Приравняем числитель к нулю.
Этап 3.2
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Вычтем из обеих частей уравнения.
Этап 3.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Разделим каждый член на .
Этап 3.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.2.1.2
Разделим на .
Этап 3.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Перепишем в виде .
Этап 3.2.4.2
Умножим на .
Этап 3.2.4.3
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.2.4.3.1
Умножим на .
Этап 3.2.4.3.2
Возведем в степень .
Этап 3.2.4.3.3
Возведем в степень .
Этап 3.2.4.3.4
Применим правило степени для объединения показателей.
Этап 3.2.4.3.5
Добавим и .
Этап 3.2.4.3.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.2.4.3.6.1
С помощью запишем в виде .
Этап 3.2.4.3.6.2
Применим правило степени и перемножим показатели, .
Этап 3.2.4.3.6.3
Объединим и .
Этап 3.2.4.3.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.4.3.6.4.1
Сократим общий множитель.
Этап 3.2.4.3.6.4.2
Перепишем это выражение.
Этап 3.2.4.3.6.5
Найдем экспоненту.
Этап 3.2.4.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.2.4.4.1
Объединим, используя правило умножения для радикалов.
Этап 3.2.4.4.2
Умножим на .
Этап 3.2.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.2.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.2.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.2.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Solve the function at .
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Объединим и .
Этап 4.2.2
Объединим и .
Этап 4.2.3
Окончательный ответ: .
Этап 5
Solve the function at .
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Умножим на .
Этап 5.2.1.2
Объединим и .
Этап 5.2.2
Вынесем знак минуса перед дробью.
Этап 5.2.3
Объединим и .
Этап 5.2.4
Перенесем влево от .
Этап 5.2.5
Окончательный ответ: .
Этап 6
The horizontal tangent lines are
Этап 7