Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.2
Производная по равна .
Этап 1.1.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.4
Изменим порядок членов.
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Вынесем множитель из .
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 2.4.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 2.4.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Разделим каждый член уравнения на .
Этап 2.5.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.2.2.1
Сократим общий множитель.
Этап 2.5.2.2.2
Перепишем это выражение.
Этап 2.5.2.3
Разделим дроби.
Этап 2.5.2.4
Переведем в .
Этап 2.5.2.5
Разделим на .
Этап 2.5.2.6
Разделим дроби.
Этап 2.5.2.7
Переведем в .
Этап 2.5.2.8
Разделим на .
Этап 2.5.2.9
Умножим на .
Этап 2.5.2.10
Вычтем из обеих частей уравнения.
Этап 2.5.2.11
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.2.11.1
Разделим каждый член на .
Этап 2.5.2.11.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.5.2.11.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.2.11.2.1.1
Сократим общий множитель.
Этап 2.5.2.11.2.1.2
Разделим на .
Этап 2.5.2.11.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.5.2.11.3.1
Вынесем знак минуса перед дробью.
Этап 2.5.2.12
Возьмем обратный тангенс обеих частей уравнения, чтобы извлечь из тангенса.
Этап 2.5.2.13
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.5.2.13.1
Найдем значение .
Этап 2.5.2.14
Функция тангенса отрицательна во втором и четвертом квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 2.5.2.15
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Этап 2.5.2.15.1
Добавим к .
Этап 2.5.2.15.2
Результирующий угол является положительным и отличается от на полный оборот.
Этап 2.5.2.16
Найдем период .
Нажмите для увеличения количества этапов...
Этап 2.5.2.16.1
Период функции можно вычислить по формуле .
Этап 2.5.2.16.2
Заменим на в формуле периода.
Этап 2.5.2.16.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 2.5.2.16.4
Разделим на .
Этап 2.5.2.17
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Этап 2.5.2.17.1
Добавим к , чтобы найти положительный угол.
Этап 2.5.2.17.2
Заменим на десятичную аппроксимацию.
Этап 2.5.2.17.3
Вычтем из .
Этап 2.5.2.17.4
Перечислим новые углы.
Этап 2.5.2.18
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 2.6
Окончательным решением являются все значения, при которых верно.
, для любого целого
, для любого целого
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Возведем в степень .
Этап 4.1.2.2
Умножим на .
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Возведем в степень .
Этап 4.2.2.2
Умножим на .
Этап 4.3
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Добавим и .
Этап 4.3.2.2
Возведем в степень .
Этап 4.3.2.3
Добавим и .
Этап 4.3.2.4
Умножим на .
Этап 4.4
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Подставим вместо .
Этап 4.4.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.4.2.1
Добавим и .
Этап 4.4.2.2
Возведем в степень .
Этап 4.4.2.3
Добавим и .
Этап 4.4.2.4
Умножим на .
Этап 4.5
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Подставим вместо .
Этап 4.5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.5.2.1
Добавим и .
Этап 4.5.2.2
Возведем в степень .
Этап 4.5.2.3
Добавим и .
Этап 4.5.2.4
Умножим на .
Этап 4.6
Перечислим все точки.
Этап 5