Математический анализ Примеры

Найти особые точки t^4+t^3+t^2+1
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.6
Добавим и .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Вынесем множитель из .
Этап 2.2.3
Вынесем множитель из .
Этап 2.2.4
Вынесем множитель из .
Этап 2.2.5
Вынесем множитель из .
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к .
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.5.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.5.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.5.2.3.1.1
Возведем в степень .
Этап 2.5.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.5.2.3.1.2.1
Умножим на .
Этап 2.5.2.3.1.2.2
Умножим на .
Этап 2.5.2.3.1.3
Вычтем из .
Этап 2.5.2.3.1.4
Перепишем в виде .
Этап 2.5.2.3.1.5
Перепишем в виде .
Этап 2.5.2.3.1.6
Перепишем в виде .
Этап 2.5.2.3.2
Умножим на .
Этап 2.5.2.4
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.5.2.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.5.2.4.1.1
Возведем в степень .
Этап 2.5.2.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.5.2.4.1.2.1
Умножим на .
Этап 2.5.2.4.1.2.2
Умножим на .
Этап 2.5.2.4.1.3
Вычтем из .
Этап 2.5.2.4.1.4
Перепишем в виде .
Этап 2.5.2.4.1.5
Перепишем в виде .
Этап 2.5.2.4.1.6
Перепишем в виде .
Этап 2.5.2.4.2
Умножим на .
Этап 2.5.2.4.3
Заменим на .
Этап 2.5.2.4.4
Перепишем в виде .
Этап 2.5.2.4.5
Вынесем множитель из .
Этап 2.5.2.4.6
Вынесем множитель из .
Этап 2.5.2.4.7
Вынесем знак минуса перед дробью.
Этап 2.5.2.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.5.2.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.5.2.5.1.1
Возведем в степень .
Этап 2.5.2.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.5.2.5.1.2.1
Умножим на .
Этап 2.5.2.5.1.2.2
Умножим на .
Этап 2.5.2.5.1.3
Вычтем из .
Этап 2.5.2.5.1.4
Перепишем в виде .
Этап 2.5.2.5.1.5
Перепишем в виде .
Этап 2.5.2.5.1.6
Перепишем в виде .
Этап 2.5.2.5.2
Умножим на .
Этап 2.5.2.5.3
Заменим на .
Этап 2.5.2.5.4
Перепишем в виде .
Этап 2.5.2.5.5
Вынесем множитель из .
Этап 2.5.2.5.6
Вынесем множитель из .
Этап 2.5.2.5.7
Вынесем знак минуса перед дробью.
Этап 2.5.2.6
Окончательный ответ является комбинацией обоих решений.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Возведение в любую положительную степень дает .
Этап 4.1.2.1.2
Возведение в любую положительную степень дает .
Этап 4.1.2.1.3
Возведение в любую положительную степень дает .
Этап 4.1.2.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 4.1.2.2.1
Добавим и .
Этап 4.1.2.2.2
Добавим и .
Этап 4.1.2.2.3
Добавим и .
Этап 4.2
Перечислим все точки.
Этап 5