Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем.
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Упростим выражение.
Этап 1.1.3.3.1
Умножим на .
Этап 1.1.3.3.2
Перенесем влево от .
Этап 1.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Упростим.
Этап 1.1.4.1
Изменим порядок членов.
Этап 1.1.4.2
Изменим порядок множителей в .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вынесем множитель из .
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Вынесем множитель из .
Этап 2.2.3
Вынесем множитель из .
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к .
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Этап 2.5.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 2.5.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 2.5.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 2.6
Приравняем к , затем решим относительно .
Этап 2.6.1
Приравняем к .
Этап 2.6.2
Решим относительно .
Этап 2.6.2.1
Вычтем из обеих частей уравнения.
Этап 2.6.2.2
Разделим каждый член на и упростим.
Этап 2.6.2.2.1
Разделим каждый член на .
Этап 2.6.2.2.2
Упростим левую часть.
Этап 2.6.2.2.2.1
Сократим общий множитель .
Этап 2.6.2.2.2.1.1
Сократим общий множитель.
Этап 2.6.2.2.2.1.2
Разделим на .
Этап 2.6.2.2.3
Упростим правую часть.
Этап 2.6.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 2.7
Окончательным решением являются все значения, при которых верно.
Этап 3
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Возведение в любую положительную степень дает .
Этап 4.1.2.2
Умножим на .
Этап 4.1.2.3
Любое число в степени равно .
Этап 4.1.2.4
Умножим на .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Применим правило степени для распределения показателей.
Этап 4.2.2.1.1
Применим правило умножения к .
Этап 4.2.2.1.2
Применим правило умножения к .
Этап 4.2.2.2
Упростим выражение.
Этап 4.2.2.2.1
Возведем в степень .
Этап 4.2.2.2.2
Умножим на .
Этап 4.2.2.2.3
Возведем в степень .
Этап 4.2.2.2.4
Возведем в степень .
Этап 4.2.2.3
Сократим общий множитель .
Этап 4.2.2.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 4.2.2.3.2
Сократим общий множитель.
Этап 4.2.2.3.3
Перепишем это выражение.
Этап 4.2.2.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2.2.5
Объединим.
Этап 4.2.2.6
Умножим на .
Этап 4.3
Перечислим все точки.
Этап 5