Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем.
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2
Найдем значение .
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Найдем значение .
Этап 1.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4.3
Умножим на .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Разложим левую часть уравнения на множители.
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.1.1
Вынесем множитель из .
Этап 2.2.1.2
Вынесем множитель из .
Этап 2.2.1.3
Вынесем множитель из .
Этап 2.2.1.4
Вынесем множитель из .
Этап 2.2.1.5
Вынесем множитель из .
Этап 2.2.1.6
Вынесем множитель из .
Этап 2.2.1.7
Вынесем множитель из .
Этап 2.2.2
Разложим на множители, используя теорему о рациональных корнях.
Этап 2.2.2.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 2.2.2.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 2.2.2.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 2.2.2.3.1
Подставим в многочлен.
Этап 2.2.2.3.2
Возведем в степень .
Этап 2.2.2.3.3
Возведем в степень .
Этап 2.2.2.3.4
Умножим на .
Этап 2.2.2.3.5
Вычтем из .
Этап 2.2.2.3.6
Умножим на .
Этап 2.2.2.3.7
Добавим и .
Этап 2.2.2.3.8
Вычтем из .
Этап 2.2.2.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 2.2.2.5
Разделим на .
Этап 2.2.2.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
- | - | + | - |
Этап 2.2.2.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | - | + | - |
Этап 2.2.2.5.3
Умножим новое частное на делитель.
- | - | + | - | ||||||||
+ | - |
Этап 2.2.2.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | - | + | - | ||||||||
- | + |
Этап 2.2.2.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Этап 2.2.2.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Этап 2.2.2.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Этап 2.2.2.5.8
Умножим новое частное на делитель.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Этап 2.2.2.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Этап 2.2.2.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Этап 2.2.2.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 2.2.2.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 2.2.2.5.13
Умножим новое частное на делитель.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 2.2.2.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Этап 2.2.2.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Этап 2.2.2.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 2.2.2.6
Запишем в виде набора множителей.
Этап 2.2.3
Разложим на множители.
Этап 2.2.3.1
Разложим на множители, используя правило полных квадратов.
Этап 2.2.3.1.1
Перепишем в виде .
Этап 2.2.3.1.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 2.2.3.1.3
Перепишем многочлен.
Этап 2.2.3.1.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 2.2.3.2
Избавимся от ненужных скобок.
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Добавим к обеим частям уравнения.
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Этап 2.5.2.1
Приравняем к .
Этап 2.5.2.2
Добавим к обеим частям уравнения.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 3
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Упростим каждый член.
Этап 4.1.2.1.1
Единица в любой степени равна единице.
Этап 4.1.2.1.2
Единица в любой степени равна единице.
Этап 4.1.2.1.3
Умножим на .
Этап 4.1.2.1.4
Единица в любой степени равна единице.
Этап 4.1.2.1.5
Умножим на .
Этап 4.1.2.1.6
Умножим на .
Этап 4.1.2.2
Упростим путем сложения и вычитания.
Этап 4.1.2.2.1
Вычтем из .
Этап 4.1.2.2.2
Добавим и .
Этап 4.1.2.2.3
Вычтем из .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Упростим каждый член.
Этап 4.2.2.1.1
Возведем в степень .
Этап 4.2.2.1.2
Возведем в степень .
Этап 4.2.2.1.3
Умножим на .
Этап 4.2.2.1.4
Возведем в степень .
Этап 4.2.2.1.5
Умножим на .
Этап 4.2.2.1.6
Умножим на .
Этап 4.2.2.2
Упростим путем сложения и вычитания.
Этап 4.2.2.2.1
Вычтем из .
Этап 4.2.2.2.2
Добавим и .
Этап 4.2.2.2.3
Вычтем из .
Этап 4.3
Перечислим все точки.
Этап 5