Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем.
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2
Найдем значение .
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Найдем значение .
Этап 1.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4.3
Умножим на .
Этап 1.1.5
Продифференцируем, используя правило константы.
Этап 1.1.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.5.2
Добавим и .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Разложим левую часть уравнения на множители.
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.1.1
Вынесем множитель из .
Этап 2.2.1.2
Вынесем множитель из .
Этап 2.2.1.3
Вынесем множитель из .
Этап 2.2.1.4
Вынесем множитель из .
Этап 2.2.1.5
Вынесем множитель из .
Этап 2.2.1.6
Вынесем множитель из .
Этап 2.2.1.7
Вынесем множитель из .
Этап 2.2.2
Вынесем наибольший общий делитель из каждой группы.
Этап 2.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2.2.4
Перепишем в виде .
Этап 2.2.5
Разложим на множители.
Этап 2.2.5.1
Разложим на множители.
Этап 2.2.5.1.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 2.2.5.1.2
Избавимся от ненужных скобок.
Этап 2.2.5.2
Избавимся от ненужных скобок.
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Добавим к обеим частям уравнения.
Этап 2.5
Приравняем к , затем решим относительно .
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Вычтем из обеих частей уравнения.
Этап 2.6
Приравняем к , затем решим относительно .
Этап 2.6.1
Приравняем к .
Этап 2.6.2
Добавим к обеим частям уравнения.
Этап 2.7
Окончательным решением являются все значения, при которых верно.
Этап 3
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Упростим каждый член.
Этап 4.1.2.1.1
Возведем в степень .
Этап 4.1.2.1.2
Возведем в степень .
Этап 4.1.2.1.3
Умножим на .
Этап 4.1.2.1.4
Возведем в степень .
Этап 4.1.2.1.5
Умножим на .
Этап 4.1.2.1.6
Умножим на .
Этап 4.1.2.2
Упростим путем сложения и вычитания.
Этап 4.1.2.2.1
Вычтем из .
Этап 4.1.2.2.2
Вычтем из .
Этап 4.1.2.2.3
Добавим и .
Этап 4.1.2.2.4
Вычтем из .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Упростим каждый член.
Этап 4.2.2.1.1
Возведем в степень .
Этап 4.2.2.1.2
Возведем в степень .
Этап 4.2.2.1.3
Умножим на .
Этап 4.2.2.1.4
Возведем в степень .
Этап 4.2.2.1.5
Умножим на .
Этап 4.2.2.1.6
Умножим на .
Этап 4.2.2.2
Упростим путем сложения и вычитания.
Этап 4.2.2.2.1
Добавим и .
Этап 4.2.2.2.2
Вычтем из .
Этап 4.2.2.2.3
Вычтем из .
Этап 4.2.2.2.4
Вычтем из .
Этап 4.3
Найдем значение в .
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим.
Этап 4.3.2.1
Упростим каждый член.
Этап 4.3.2.1.1
Единица в любой степени равна единице.
Этап 4.3.2.1.2
Единица в любой степени равна единице.
Этап 4.3.2.1.3
Умножим на .
Этап 4.3.2.1.4
Единица в любой степени равна единице.
Этап 4.3.2.1.5
Умножим на .
Этап 4.3.2.1.6
Умножим на .
Этап 4.3.2.2
Упростим путем сложения и вычитания.
Этап 4.3.2.2.1
Вычтем из .
Этап 4.3.2.2.2
Вычтем из .
Этап 4.3.2.2.3
Добавим и .
Этап 4.3.2.2.4
Вычтем из .
Этап 4.4
Перечислим все точки.
Этап 5