Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Найдем значение .
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.3.4
Объединим и .
Этап 1.1.3.5
Объединим числители над общим знаменателем.
Этап 1.1.3.6
Упростим числитель.
Этап 1.1.3.6.1
Умножим на .
Этап 1.1.3.6.2
Вычтем из .
Этап 1.1.3.7
Вынесем знак минуса перед дробью.
Этап 1.1.3.8
Объединим и .
Этап 1.1.3.9
Умножим на .
Этап 1.1.3.10
Объединим и .
Этап 1.1.3.11
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.1.3.12
Вынесем множитель из .
Этап 1.1.3.13
Сократим общие множители.
Этап 1.1.3.13.1
Вынесем множитель из .
Этап 1.1.3.13.2
Сократим общий множитель.
Этап 1.1.3.13.3
Перепишем это выражение.
Этап 1.1.3.14
Вынесем знак минуса перед дробью.
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Найдем НОК знаменателей членов уравнения.
Этап 2.3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.3.2
НОК единицы и любого выражения есть это выражение.
Этап 2.4
Каждый член в умножим на , чтобы убрать дроби.
Этап 2.4.1
Умножим каждый член на .
Этап 2.4.2
Упростим левую часть.
Этап 2.4.2.1
Сократим общий множитель .
Этап 2.4.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.4.2.1.2
Сократим общий множитель.
Этап 2.4.2.1.3
Перепишем это выражение.
Этап 2.5
Решим уравнение.
Этап 2.5.1
Перепишем уравнение в виде .
Этап 2.5.2
Разделим каждый член на и упростим.
Этап 2.5.2.1
Разделим каждый член на .
Этап 2.5.2.2
Упростим левую часть.
Этап 2.5.2.2.1
Сократим общий множитель.
Этап 2.5.2.2.2
Разделим на .
Этап 2.5.2.3
Упростим правую часть.
Этап 2.5.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.5.3
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 2.5.4
Упростим показатель степени.
Этап 2.5.4.1
Упростим левую часть.
Этап 2.5.4.1.1
Упростим .
Этап 2.5.4.1.1.1
Перемножим экспоненты в .
Этап 2.5.4.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 2.5.4.1.1.1.2
Сократим общий множитель .
Этап 2.5.4.1.1.1.2.1
Сократим общий множитель.
Этап 2.5.4.1.1.1.2.2
Перепишем это выражение.
Этап 2.5.4.1.1.1.3
Сократим общий множитель .
Этап 2.5.4.1.1.1.3.1
Сократим общий множитель.
Этап 2.5.4.1.1.1.3.2
Перепишем это выражение.
Этап 2.5.4.1.1.2
Упростим.
Этап 2.5.4.2
Упростим правую часть.
Этап 2.5.4.2.1
Упростим .
Этап 2.5.4.2.1.1
Применим правило умножения к .
Этап 2.5.4.2.1.2
Единица в любой степени равна единице.
Этап 3
Этап 3.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 3.2
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.3
Решим относительно .
Этап 3.3.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3.3.2
Упростим каждую часть уравнения.
Этап 3.3.2.1
С помощью запишем в виде .
Этап 3.3.2.2
Упростим левую часть.
Этап 3.3.2.2.1
Перемножим экспоненты в .
Этап 3.3.2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 3.3.2.2.1.2
Сократим общий множитель .
Этап 3.3.2.2.1.2.1
Сократим общий множитель.
Этап 3.3.2.2.1.2.2
Перепишем это выражение.
Этап 3.3.2.3
Упростим правую часть.
Этап 3.3.2.3.1
Возведение в любую положительную степень дает .
Этап 3.3.3
Решим относительно .
Этап 3.3.3.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.3.3.2
Упростим .
Этап 3.3.3.2.1
Перепишем в виде .
Этап 3.3.3.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 3.4
Зададим подкоренное выражение в меньшим , чтобы узнать, где данное выражение не определено.
Этап 3.5
Решим относительно .
Этап 3.5.1
Возьмем указанный корень от обеих частей неравенства, чтобы исключить член со степенью в левой части.
Этап 3.5.2
Упростим уравнение.
Этап 3.5.2.1
Упростим левую часть.
Этап 3.5.2.1.1
Вынесем члены из-под знака корня.
Этап 3.5.2.2
Упростим правую часть.
Этап 3.5.2.2.1
Упростим .
Этап 3.5.2.2.1.1
Перепишем в виде .
Этап 3.5.2.2.1.2
Вынесем члены из-под знака корня.
Этап 3.6
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим каждый член.
Этап 4.1.2.1
Объединим и .
Этап 4.1.2.2
Перенесем в числитель, используя правило отрицательных степеней .
Этап 4.1.2.3
Умножим на , сложив экспоненты.
Этап 4.1.2.3.1
Умножим на .
Этап 4.1.2.3.1.1
Возведем в степень .
Этап 4.1.2.3.1.2
Применим правило степени для объединения показателей.
Этап 4.1.2.3.2
Запишем в виде дроби с общим знаменателем.
Этап 4.1.2.3.3
Объединим числители над общим знаменателем.
Этап 4.1.2.3.4
Вычтем из .
Этап 4.1.2.4
Изменим знак экспоненты, переписав основание в виде обратной величины.
Этап 4.1.2.5
Перемножим экспоненты в .
Этап 4.1.2.5.1
Применим правило степени и перемножим показатели, .
Этап 4.1.2.5.2
Сократим общий множитель .
Этап 4.1.2.5.2.1
Сократим общий множитель.
Этап 4.1.2.5.2.2
Перепишем это выражение.
Этап 4.1.2.6
Умножим .
Этап 4.1.2.6.1
Перепишем в виде .
Этап 4.1.2.6.2
Перемножим экспоненты в .
Этап 4.1.2.6.2.1
Применим правило степени и перемножим показатели, .
Этап 4.1.2.6.2.2
Объединим и .
Этап 4.1.2.6.3
Применим правило степени для объединения показателей.
Этап 4.1.2.6.4
Запишем в виде дроби с общим знаменателем.
Этап 4.1.2.6.5
Объединим числители над общим знаменателем.
Этап 4.1.2.6.6
Добавим и .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Упростим каждый член.
Этап 4.2.2.1.1
Умножим на .
Этап 4.2.2.1.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2.2.1.3
Упростим знаменатель.
Этап 4.2.2.1.3.1
Перепишем в виде .
Этап 4.2.2.1.3.2
Применим правило степени и перемножим показатели, .
Этап 4.2.2.1.3.3
Сократим общий множитель .
Этап 4.2.2.1.3.3.1
Сократим общий множитель.
Этап 4.2.2.1.3.3.2
Перепишем это выражение.
Этап 4.2.2.1.3.4
Найдем экспоненту.
Этап 4.2.2.1.3.5
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.2.2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.2.2.2
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.3
Перечислим все точки.
Этап 5