Математический анализ Примеры

Найти особые точки f(x)=x^3-3x^2+6x+1
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.4.2
Добавим и .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вынесем множитель из .
Этап 2.2.2
Вынесем множитель из .
Этап 2.2.3
Вынесем множитель из .
Этап 2.2.4
Вынесем множитель из .
Этап 2.2.5
Вынесем множитель из .
Этап 2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Разделим на .
Этап 2.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.1.1
Возведем в степень .
Этап 2.6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.6.1.2.1
Умножим на .
Этап 2.6.1.2.2
Умножим на .
Этап 2.6.1.3
Вычтем из .
Этап 2.6.1.4
Перепишем в виде .
Этап 2.6.1.5
Перепишем в виде .
Этап 2.6.1.6
Перепишем в виде .
Этап 2.6.1.7
Перепишем в виде .
Этап 2.6.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.6.1.9
Перенесем влево от .
Этап 2.6.2
Умножим на .
Этап 2.6.3
Упростим .
Этап 2.7
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.7.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.7.1.1
Возведем в степень .
Этап 2.7.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.7.1.2.1
Умножим на .
Этап 2.7.1.2.2
Умножим на .
Этап 2.7.1.3
Вычтем из .
Этап 2.7.1.4
Перепишем в виде .
Этап 2.7.1.5
Перепишем в виде .
Этап 2.7.1.6
Перепишем в виде .
Этап 2.7.1.7
Перепишем в виде .
Этап 2.7.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.7.1.9
Перенесем влево от .
Этап 2.7.2
Умножим на .
Этап 2.7.3
Упростим .
Этап 2.7.4
Заменим на .
Этап 2.8
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.8.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.8.1.1
Возведем в степень .
Этап 2.8.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.8.1.2.1
Умножим на .
Этап 2.8.1.2.2
Умножим на .
Этап 2.8.1.3
Вычтем из .
Этап 2.8.1.4
Перепишем в виде .
Этап 2.8.1.5
Перепишем в виде .
Этап 2.8.1.6
Перепишем в виде .
Этап 2.8.1.7
Перепишем в виде .
Этап 2.8.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.8.1.9
Перенесем влево от .
Этап 2.8.2
Умножим на .
Этап 2.8.3
Упростим .
Этап 2.8.4
Заменим на .
Этап 2.9
Окончательный ответ является комбинацией обоих решений.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
В области определения исходной задачи нет значений , при которых производная равна или не определена.
Критические точки не найдены