Математический анализ Примеры

Найти особые точки f(x)=(x-3)/(x^2)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Применим правило степени и перемножим показатели, .
Этап 1.1.2.1.2
Умножим на .
Этап 1.1.2.2
По правилу суммы производная по имеет вид .
Этап 1.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.2.5.1
Добавим и .
Этап 1.1.2.5.2
Умножим на .
Этап 1.1.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.7
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.1
Умножим на .
Этап 1.1.2.7.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.2.1
Вынесем множитель из .
Этап 1.1.2.7.2.2
Вынесем множитель из .
Этап 1.1.2.7.2.3
Вынесем множитель из .
Этап 1.1.3
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Вынесем множитель из .
Этап 1.1.3.2
Сократим общий множитель.
Этап 1.1.3.3
Перепишем это выражение.
Этап 1.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.4.1
Применим свойство дистрибутивности.
Этап 1.1.4.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.4.2.1
Умножим на .
Этап 1.1.4.2.2
Вычтем из .
Этап 1.1.4.3
Вынесем множитель из .
Этап 1.1.4.4
Перепишем в виде .
Этап 1.1.4.5
Вынесем множитель из .
Этап 1.1.4.6
Перепишем в виде .
Этап 1.1.4.7
Вынесем знак минуса перед дробью.
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Добавим к обеим частям уравнения.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Перепишем в виде .
Этап 3.2.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Вычтем из .
Этап 4.1.2.1.2
Возведем в степень .
Этап 4.1.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.1.2.2.1
Вынесем множитель из .
Этап 4.1.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.1.2.2.2.1
Вынесем множитель из .
Этап 4.1.2.2.2.2
Сократим общий множитель.
Этап 4.1.2.2.2.3
Перепишем это выражение.
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Возведение в любую положительную степень дает .
Этап 4.2.2.2
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.3
Перечислим все точки.
Этап 5