Математический анализ Примеры

Найти особые точки f(x)=1/(x^2-9)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Перепишем в виде .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
По правилу суммы производная по имеет вид .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.3.4.1
Добавим и .
Этап 1.1.3.4.2
Умножим на .
Этап 1.1.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.1.5
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1.5.1
Объединим и .
Этап 1.1.5.2
Вынесем знак минуса перед дробью.
Этап 1.1.5.3
Объединим и .
Этап 1.1.5.4
Перенесем влево от .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Разделим на .
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Перепишем в виде .
Этап 3.2.1.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 3.2.1.3
Применим правило умножения к .
Этап 3.2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Приравняем к .
Этап 3.2.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.3.2.1
Приравняем к .
Этап 3.2.3.2.2
Вычтем из обеих частей уравнения.
Этап 3.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.4.1
Приравняем к .
Этап 3.2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.4.2.1
Приравняем к .
Этап 3.2.4.2.2
Добавим к обеим частям уравнения.
Этап 3.2.5
Окончательным решением являются все значения, при которых верно.
Этап 3.3
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Возведение в любую положительную степень дает .
Этап 4.1.2.1.2
Вычтем из .
Этап 4.1.2.2
Вынесем знак минуса перед дробью.
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Возведем в степень .
Этап 4.2.2.2
Вычтем из .
Этап 4.2.2.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.3
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Возведем в степень .
Этап 4.3.2.2
Вычтем из .
Этап 4.3.2.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.4
Перечислим все точки.
Этап 5