Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Найдем значение .
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.2.4
Объединим и .
Этап 1.1.2.5
Объединим числители над общим знаменателем.
Этап 1.1.2.6
Упростим числитель.
Этап 1.1.2.6.1
Умножим на .
Этап 1.1.2.6.2
Вычтем из .
Этап 1.1.2.7
Объединим и .
Этап 1.1.2.8
Объединим и .
Этап 1.1.2.9
Умножим на .
Этап 1.1.2.10
Вынесем множитель из .
Этап 1.1.2.11
Сократим общие множители.
Этап 1.1.2.11.1
Вынесем множитель из .
Этап 1.1.2.11.2
Сократим общий множитель.
Этап 1.1.2.11.3
Перепишем это выражение.
Этап 1.1.2.11.4
Разделим на .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Продифференцируем, используя правило константы.
Этап 1.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.4.2
Добавим и .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 2.4
Упростим показатель степени.
Этап 2.4.1
Упростим левую часть.
Этап 2.4.1.1
Упростим .
Этап 2.4.1.1.1
Применим правило умножения к .
Этап 2.4.1.1.2
Возведем в степень .
Этап 2.4.1.1.3
Перемножим экспоненты в .
Этап 2.4.1.1.3.1
Применим правило степени и перемножим показатели, .
Этап 2.4.1.1.3.2
Сократим общий множитель .
Этап 2.4.1.1.3.2.1
Сократим общий множитель.
Этап 2.4.1.1.3.2.2
Перепишем это выражение.
Этап 2.4.1.1.4
Упростим.
Этап 2.4.2
Упростим правую часть.
Этап 2.4.2.1
Возведем в степень .
Этап 2.5
Разделим каждый член на и упростим.
Этап 2.5.1
Разделим каждый член на .
Этап 2.5.2
Упростим левую часть.
Этап 2.5.2.1
Сократим общий множитель .
Этап 2.5.2.1.1
Сократим общий множитель.
Этап 2.5.2.1.2
Разделим на .
Этап 2.5.3
Упростим правую часть.
Этап 2.5.3.1
Разделим на .
Этап 3
Этап 3.1
Преобразуем выражения, перейдя от дробных степеней к радикалам.
Этап 3.1.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 3.1.2
Любое число, возведенное в степень , является основанием.
Этап 3.2
Зададим подкоренное выражение в меньшим , чтобы узнать, где данное выражение не определено.
Этап 3.3
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Упростим каждый член.
Этап 4.1.2.1.1
Перепишем в виде .
Этап 4.1.2.1.2
Применим правило степени и перемножим показатели, .
Этап 4.1.2.1.3
Сократим общий множитель .
Этап 4.1.2.1.3.1
Сократим общий множитель.
Этап 4.1.2.1.3.2
Перепишем это выражение.
Этап 4.1.2.1.4
Возведем в степень .
Этап 4.1.2.1.5
Умножим на .
Этап 4.1.2.1.6
Умножим на .
Этап 4.1.2.2
Упростим путем добавления чисел.
Этап 4.1.2.2.1
Добавим и .
Этап 4.1.2.2.2
Добавим и .
Этап 4.2
Перечислим все точки.
Этап 5