Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Производная по равна .
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Заменим все вхождения на .
Этап 2.4
Перенесем влево от .
Этап 2.5
Перепишем в виде .
Этап 2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.7
Умножим на .
Этап 2.8
Упростим.
Этап 2.8.1
Применим свойство дистрибутивности.
Этап 2.8.2
Изменим порядок членов.
Этап 3
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
Продифференцируем.
Этап 3.2.1
По правилу суммы производная по имеет вид .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Перепишем в виде .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Упростим левую часть.
Этап 5.1.1
Изменим порядок множителей в .
Этап 5.2
Упростим правую часть.
Этап 5.2.1
Упростим .
Этап 5.2.1.1
Применим свойство дистрибутивности.
Этап 5.2.1.2
Упростим выражение.
Этап 5.2.1.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.1.2.2
Изменим порядок множителей в .
Этап 5.3
Вычтем из обеих частей уравнения.
Этап 5.4
Вычтем из обеих частей уравнения.
Этап 5.5
Вынесем множитель из .
Этап 5.5.1
Вынесем множитель из .
Этап 5.5.2
Вынесем множитель из .
Этап 5.5.3
Вынесем множитель из .
Этап 5.6
Перепишем в виде .
Этап 5.7
Разделим каждый член на и упростим.
Этап 5.7.1
Разделим каждый член на .
Этап 5.7.2
Упростим левую часть.
Этап 5.7.2.1
Сократим общий множитель .
Этап 5.7.2.1.1
Сократим общий множитель.
Этап 5.7.2.1.2
Разделим на .
Этап 5.7.3
Упростим правую часть.
Этап 5.7.3.1
Вынесем знак минуса перед дробью.
Этап 5.7.3.2
Объединим числители над общим знаменателем.
Этап 6
Заменим на .