Математический анализ Примеры

Найти особые точки f(x)=x^5-10x^3-8
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3.2
Добавим и .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перепишем в виде .
Этап 2.2.2
Пусть . Подставим вместо для всех.
Этап 2.2.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Вынесем множитель из .
Этап 2.2.3.2
Вынесем множитель из .
Этап 2.2.3.3
Вынесем множитель из .
Этап 2.2.4
Заменим все вхождения на .
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.4.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.4.2.2.1
Перепишем в виде .
Этап 2.4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.4.2.2.3
Плюс или минус равно .
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.2.1
Добавим к обеим частям уравнения.
Этап 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.5.2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.5.2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.5.2.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.5.2.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Возведение в любую положительную степень дает .
Этап 4.1.2.1.2
Возведение в любую положительную степень дает .
Этап 4.1.2.1.3
Умножим на .
Этап 4.1.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 4.1.2.2.1
Добавим и .
Этап 4.1.2.2.2
Вычтем из .
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Перепишем в виде .
Этап 4.2.2.1.2
Возведем в степень .
Этап 4.2.2.1.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.3.1
Вынесем множитель из .
Этап 4.2.2.1.3.2
Перепишем в виде .
Этап 4.2.2.1.4
Вынесем члены из-под знака корня.
Этап 4.2.2.1.5
Перепишем в виде .
Этап 4.2.2.1.6
Возведем в степень .
Этап 4.2.2.1.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.7.1
Вынесем множитель из .
Этап 4.2.2.1.7.2
Перепишем в виде .
Этап 4.2.2.1.8
Вынесем члены из-под знака корня.
Этап 4.2.2.1.9
Умножим на .
Этап 4.2.2.2
Вычтем из .
Этап 4.3
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1
Применим правило умножения к .
Этап 4.3.2.1.2
Возведем в степень .
Этап 4.3.2.1.3
Перепишем в виде .
Этап 4.3.2.1.4
Возведем в степень .
Этап 4.3.2.1.5
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.5.1
Вынесем множитель из .
Этап 4.3.2.1.5.2
Перепишем в виде .
Этап 4.3.2.1.6
Вынесем члены из-под знака корня.
Этап 4.3.2.1.7
Умножим на .
Этап 4.3.2.1.8
Применим правило умножения к .
Этап 4.3.2.1.9
Возведем в степень .
Этап 4.3.2.1.10
Перепишем в виде .
Этап 4.3.2.1.11
Возведем в степень .
Этап 4.3.2.1.12
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.12.1
Вынесем множитель из .
Этап 4.3.2.1.12.2
Перепишем в виде .
Этап 4.3.2.1.13
Вынесем члены из-под знака корня.
Этап 4.3.2.1.14
Умножим на .
Этап 4.3.2.1.15
Умножим на .
Этап 4.3.2.2
Добавим и .
Этап 4.4
Перечислим все точки.
Этап 5